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Preface

He who does not plow,
must write.
- Martin A. Hansen

The ACM HOPL-2 conference on the History of Programming Languages asked me
to write a paper on the history of C++. This seemed a reasonable idea and a bit of an
honor, so | started writing. To get a more comprehensive and balanced view of C++'s
growth, | asked a few friends from the early days of C++ for their recollections. That
caused news of this project to travel through the grapevine. There, the story mutated,
and one day | received a message from a friend asking where he could buy my new
book on the design of C++. That email message is the real origin of this book.

Traditional books about programming and programming languages explain what a
language is and how to use it. However, many people are aso curious about why a
language is the way it is and how it came to be that way. This book answers these last
two questions for C++. It explains how C++ evolved from its firgt design to the lan-
guage in use today. It describes the key problems, design aims, language ideas, and
constraints that shaped C++, and how they changed over time.

Naturally, C++ and the ideas about design and programming that shaped it didn't
just mutate by themselves. What really evolved was the C++ users' understanding of
their practical problems and of the tools needed to help solve them. Consequently,
this book also traces the key problems tackled using C++ and the views of the people
who tackled them in ways that influenced C++.

C++ is dtill ayoung language. Some of the issues discussed here are yet unknown
to many users. Many implications of decisions described here will not become obvi-
ous for years to come. This book presents my view of how C++ came about, what it
is, and what it ought to be. | hope this will be of help to people trying to understand
how best to use C++ and in the continuing evolution of C++.
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The emphasis is on the overall design goals, practical constraints, and people that
shaped C++. The key design decisions relating to language features are discussed and
put into their historical context. The evolution of C++ is traced from C with Classes
through Release 1.0 and 2.0 to the current ANSI/ISO standards work and the explo-
son of use, interest, commercial activity, compilers, tools, environments, and
libraries. C++'s relationship to C and Simula is discussed in detail. C++'s relation-
ship to other languages is discussed briefly. The design of major language facilities
such as classes, inheritance, abstract classes, overloading, memory management, tem-
plates, exception handling, run-time type information, and namespaces are discussed
in some detail.

The primary aim of this book is to give C++ programmers a better idea of the
background and fundamental concepts of their language and hopefully to inspire them
to experiment with ways of using C++ that are new to them. This book can also be
read by experienced programmers and students of programming languages and might
help them decide whether using C++ might be worth their while.
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Notes to the Reader

Writing isthe only art
that must be learned by wrote.
-anon

Main themes of this book — how to read this book — a timeline for C++
— C++ and other programming languages — references.

Introduction

C++ was designed to provide Simulas facilities for program organization together
with C's efficiency and flexibility for systems programming. It was intended to
deliver that to real projects within haf ayear of the idea. It succeeded.

At the time, mid-1979, neither the modesty nor the preposterousness of that goal
was realized. The goal was modest in that it did not involve innovation, and prepos-
terous in both its time scale and its Draconian demands on efficiency and flexibility.
While a modest amount of innovation did emerge over the years, efficiency and flexi-
bility have been maintained without compromise. While the goals for C++ have been
refined, elaborated, and made more explicit over the years, C++ as used today directly
reflects its original aims.

The purpose of this book is to document those aims, track their evolution, and pre-
sent C++ as it emerged from the efforts of many people to create a language that
served its users according to those aims. In doing so, | try to balance historical facts
(such as names, places, and events) against technical issues of language design,
implementation, and use. It is not my aim to document every little event, but to focus
on the key events, ideas, and trends that actually influenced the definition of C++ or
might influence its further evolution and use.

Wherever events are presented, | try to describe them as they happened rather than
how | or others might have liked them to have happened. Where reasonable, | use
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quotes from papers to illustrate the aims, principles, and features as they appeared at
the time. | try not to project hindsight into events; rather, retrospective comments and
comments about the implications of a decision are presented separately and are
explicitly marked as retrospective. Basically, | abhor revisionist history and try to
avoid it. For example, | mention that "l had found Pascal's type system worse than
useless - a gtraitjacket that caused more problems than it solved by forcing me to
warp my designs to suit an implementation-oriented artifact." That | thought that at
the time is a fact, and it is a fact that had important implications for the evolution of
C++. Whether that harsh judgement on Pascal was fair and whether | would make the
same judgement today (more than a decade later) is irrelevant. | could not delete the
fact (say, to spare the feelings of Pascal fans or to spare myself embarrassment or con-
troversy) or modify it (by providing a more complete and balanced view) without
warping the history of C++.

| try to mention people who contributed to the design and evolution of C++, and |
try to be specific about their contribution and about when it occurred. This is some-
what hazardous. Since | don't have a perfect memory, | will overlook some contribu-
tions. | offer my apologies. | name the people who caused a decision to be made for
C++. Inevitably, these will not always be the people who first encountered a particu-
lar problem or who first thought of a solution. This can be unfortunate, but to be
vague or to refrain from mentioning names would be worse. Fed free to send me
information that might help clarify such points.

Where | describe historical events, there is a question of how objective my
descriptions are. | have tried to compensate for unavoidable bias by obtaining infor-
mation about events | wasn't part of, by talking to other people involved in events,
and by having several of the people involved in the evolution of C++ read this book.
Their names can be found at the end of the preface. In addition, the History of Pro-
gramming Languages (HOPL-2) paper [Stroustrup,1993] that contains the central his-
torical facts from this book was extensively reviewed and deemed free of unsuitable
bias.

How to Read this Book

Part | goes through the design, evolution, use, and standardization of C++ in roughly
chronological order. | chose this organization because during the early years, magjor
design decisions map onto the timeline as a nesat, logical sequence. Chapters 1, 2, and
3 describe the origins of C++ and its evolution through C with Classes to Release 1.0.
Chapter 4 describes the rules that guided C++'s growth during that period and beyond.
Chapter 5 provides a chronology of post-1.0 developments, and Chapter 6 describes
the ANSI/ISO C++ standards effort. To provide perspective, Chapters 7 and 8 discuss
applications, tools, and libraries. Finally, Chapter 9 presents a retrospective and some
thoughts on the future.

Part Il presents the post-Release-1.0 development of C++. The language grew
within a framework laid down around the time of Release 10. This framework
included a set of desired features, such as templates and exception handling, and rules
guiding their design. After Release 10, chronology didn't matter much to the
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development of C++. The current definition of C++ would have been substantially the
same had the chronological sequence of post-1.0 extensions been different. The
actual sequence in which the problems were solved and features provided is therefore
of historical interest only. A dtrictly chronological presentation would interfere with
the logical flow of ideas, so Part Il is organized around major language fesatures
instead. Part Il chapters are independent, so they can be read in any order: Chapter
10, memory management; Chapter 11, overloading; Chapter 12, multiple inheritance;
Chapter 13, class concept refinements; Chapter 14, casting; Chapter 15, templates;
Chapter 16, exception handling; Chapter 17, namespaces; Chapter 18, the C prepro-
Cessor.

Different people expect radically different things from a book on the design and
evolution of a programming language. In particular, no two people seem to agree on
what level of detail is appropriate for a discussion of this topic. Every review |
received on the various versions of the HOPL-2 paper (well over a dozen reviews)
was of the form, "This paper is too long ... please add information on topics X, Y,
and Z." Worse, about a third of the reviews had comments of the form, "Cut the
philosophical/religious nonsense and give us proper technical details instead.”
Another third commented, " Spare me the boring details and add information on your
design philosophy."

To wiggle out of this dilemma, | have written a book within abook. If you are not
interested in details, then at first skip all subsections (numbered 8x.y.z, where x is the
chapter number andy is the section number). Later, read whatever else looks interest-
ing. You can aso read this book sequentially starting at page one and carry on until
the end. Doing that, you might get bogged down in details. This is not meant to
imply that details are unimportant. On the contrary, no programming language can be
understood by considering principles and generalizations only; concrete examples are
essential. However, looking at the details without an overall picture to fit them into is
away of getting seriously lost.

As an additional help, | have concentrated most of the discussion of new features
and features generally considered advanced in Part 1. This allows Part | to concen-
trate on basics. Almost all of the information on nontechnical aspects of C++'s evolu-
tion is found in Part 1. People with little patience for "philosophy” can break up the
discussion in Chapters 4 through 9 by looking ahead to the technical details of lan-
guage features in Part I1.

| assume that some will use this book as a reference and that many will read indi-
vidual chapters without bothering with all preceding chapters. To make such use fea
sible, | have made the individual chapters relatively self-contained for the experienced
C++ programmer and been liberal with cross references and index terms.

Please note that | don't try to define the features of C++ here, | present only as
much detail as is necessary to provide a self-contained description of how the features
came about. | don't try to teach C++ programming or design either; for atutorial, see
[2nd].
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C++ Timéline
This C++ timeline might help you keep track of where the story is taking you:

1979 May Work on C with Classes starts
Oct 1¢ C with Classes implementation in use
1980 Apr 1s internal Bell Labs paper on C with Classes [Stroustrup,1980]
1982 Jan 14 external paper on C with Classes [Stroustrup,1982]
1983 Aug 14 C++implementation in use
Dec  C++named
1984  Jan 1st C++ manual
1985 Feb 14 external C++ release (Release E)
Oct Cfront Release 1.0 (first commercial release)
Oct The C+ + Programming Language [ Stroustrup,1986]
1986 Aug The "whatis paper" [Stroustrup, 1986b]
Sep 19 OOPSLA conference (start of OO hype centered on Smalltalk)
Nov  1¢ commercia Cfront PC port (Cfront 1.1, Glockenspiel)
1987 Feb Cfront Release 12
Nov  1¢ USENIX C++ conference (SantaFe, NM)
Dec  1s GNU C++release (1.13)
1988 Jan 1t Oregon Software C++ release
June 1 Zortech C++ release
Oct 1 USENIX C++ implementers workshop (Estes Park, CO)
1989 June  Cfront Release 2.0
Dec  ANSI X3J16 organizational meeting (Washington, DC)
1990 May  1¢ Borland C++ release
Mar  1¢ ANSI X3J16 technical meeting (Somerset, NJ)
May  TheAnnotated C++ Reference Manual [ARM]
July  Templates accepted (Seattle, WA)
Nov  Exceptions accepted (Palo Alto, CA)
1991 June The C++ Programming Language (second edition) [2nd]
June 18 1SO WG21 meeting (Lund, Sweden)
Oct Cfront Release 3.0 (including templates)
1992 Feb 1s DEC C++ release (including templates and exceptions)
Mar  1s Microsoft C++ release
May 14 IBM C++ release (including templates and exceptions)
1993 Mar  Run-time type identification accepted (Portland, OR)
July  Namespaces accepted (Munich, Germany)
1994 Sep  Draft ANSI/ISO standard due

Focus on Use and Users

This book is written for C++ users, that is, for programmers and designers. | have
tried (believe it or not) to avoid truly obscure and esoteric topics to give a user's view
of the C++ language, its facilities, and its evolution. Purely language-technical
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discussions are presented only if they shed light on issues that directly impact users.
The discussions of name lookup in templates (815.10) and of lifetime of temporaries
(86.3.2) are examples.

Programming language specidlists, language lawyers, and implementers will find
many tidbits in this book, but the aim is to present the large picture rather than to be
precise and comprehensive about every little detail. If precise language-technical
details is what you want the definition of C++ can be found in The Annotated C++
Reference Manual (the ARM) [ARM], in The C++ Programming Language (second
edition) [2nd], and in the ANSI/ISO standards committee's working paper. However,
the details of alanguage definition are incomprehensible without an understanding of
the purpose of the language. The language, details and al, exists to help build pro-
grams. My intent with this book is to provide insights that can help in this endeavor.

Programming L anguages

Severa reviewers asked me to compare C++ to other languages. This | have decided
against doing. Thereby, | have reaffirmed a long-standing and strongly held view:
Language comparisons are rarely meaningful and even less often fair. A good com-
parison of major programming languages requires more effort than most people are
willing to spend, experience in a wide range of application areas, arigid maintenance
of a detached and impartial point of view, and a sense of fairness. | do not have the
time, and as the designer of C++, my impartiality would never be fully credible.

| aso worry about a phenomenon | have repeatedly observed in honest attempts at
language comparisons. The authors try hard to be impartial, but are hopelessly biased
by focusing on a single application, a single style of programming, or a single culture
among programmers. Worse, when one language is significantly better known than
others, a subtle shift in perspective occurs: Flaws in the well-known language are
deemed minor and simple workarounds are presented, whereas similar flaws in other
languages are deemed fundamental. Often, the workarounds commonly used in the
less-well-known languages are simply unknown to the people doing the comparison
or deemed unsatisfactory because they would be unworkable in the more familiar lan-
guage.

Similarly, information about the well-known language tends to be completely up-
to-date, whereas for the less-known language, the authors rely on severa-year-old
information. For languages that are worth comparing, a comparison of language X as
defined three years ago vs. language Y as it appears in the latest experimental imple-
mentation is neither fair nor informative. Thus, | restrict my comments about lan-
guages other than C++ to generaities and to very specific comments. This is a book
about C++, its design, and the factors that shaped its evolution. It is not an attempt to
contrast C++ language features with those found in other languages.

To fit C++ into a historical context, here is a chart of the first appearances of lan-
guages that often crop up in discussions about C++:
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The chart is not intended to be anywhere near complete except for significant influ-
ences on C++. In particular, the chart understates the influence of the Simula class
concept; Ada [Ichbiah,1979] and Clu [Liskov,1979] are weakly influenced by Simula
[Birtwistle,1979]; Ada9X [Taft,1992], Beta [Madsen,1993], Eiffel [Meyer, 1988], and
Modula-3 [Nelson, 1991] are strongly influenced. C++'s influence on other languages
is left unrepresented. Solid lines indicate an influence on the structure of the
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language; dotted lines indicate an influence on specific features. Adding lines to
show this for every language would make the diagram too messy to be useful. The
dates for the languages are generaly those of the first usable implementation. For
example, Algol68 [Woodward, 1974] can be found by the year 1977 rather than 1968.

One conclusion | drew from the wildly divergent comments on the HOPL -2 paper
- and from many other sources - is that there is no agreement on what a programming
language really is and what its main purpose is supposed to be. Is aprogramming lan-
guage atool for instructing machines? A means of communicating between program-
mers? A vehicle for expressing high-level designs? A notation for algorithms? A
way of expressing relationships between concepts? A tool for experimentation? A
means of controlling computerized devices? My view is that a general-purpose pro-
gramming language must be al of those to serve its diverse set of users. The only
thing a language cannot be - and survive - is a mere collection of "neat" features.

The difference in opinions reflects differing views of what computer science is
and how languages ought to be designed. Ought computer science be a branch of
mathematics? Of engineering? Of architecture? Of art? Of biology? Of sociology?
Of philosophy? Alternatively, does it borrow techniques and approaches from all of
these disciplines? | think so.

This implies that language design parts ways from the ''purer' and more abstract
disciplines such as mathematics and philosophy. To serve its users, a general-purpose
programming language must be eclectic and take many practical and sociological fac-
tors into account. In particular, every language is designed to solve a particular set of
problems at a particular time according to the understanding of a particular group of
people. From this initial design, it grows to meet new demands and reflects new
understandings of problems and of tools and techniques for solving them. This view
is pragmatic, yet not unprincipled. It is my firm belief that all successful languages
are grown and not merely designed from first principles. Principles underlie the first
design and guide the further evolution of the language. However, even principles
evolve.
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1

The Prehistory of C++

In olden days,
when EVIL ruled!
- Kristen Nygaard

Simula and distributed systems — C and systems programming — the
influence of mathematics, history, philosophy, and literature.

11 Simulaand Distributed Systems

The prehistory of C++ - the couple of years before the idea of adding Simula-like fea
tures to C occurred to me - is important because during this time, the criteria and ide-
asthat later shaped C++ emerged. | was working on my Ph.D. Thesis in the Comput-
ing Laboratory of Cambridge University in England. My aim was to study alterna-
tives for the organization of system software for distributed systems. The conceptual
framework was provided by the capability-based Cambridge CAP computer and its
experimental and continuously evolving operating system [Wilkes,1979]. The details
of this work and its outcome [Stroustrup,1979] are of little relevance to C++. What is
relevant, though, was the focus on composing software out of well-delimited modules
and that the main experimental tool was a relatively large and detailed simulator |
wrote for simulating software running on a distributed system.

The initial version of this simulator was written in Simula [Birtwistle, 1979] and
ran on the Cambridge University computer center's IBM 360/165 mainframe. It was
a pleasure to write that smulator. The features of Simula were almost ideal for the
purpose, and | was particularly impressed by the way the concepts of the language
helped me think about the problems in my application. The class concept allowed me
to map my application concepts into the language constructs in a direct way that made
my code more readable than | had seen in any other language. The way Simula
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classes can act as co-routines made the inherent concurrency of my application easy to
express. For example, an object of class computer could trivially be made to work
in pseudo-parallel with other objects of class computer. Class hierarchies were
used to express variants of application-level concepts. For example, different types of
computers could be expressed as classes derived from class computer and different
types of inter-module communication mechanisms could be expressed as classes
derived from class IPC. The use of class hierarchies was not heavy, though; the use
of classes to express concurrency was much more important in the organization of my
simulator.

During writing and initial debugging, | acquired a great respect for the expressive-
ness of Simulas type system and its compiler's ability to catch type errors. |
observed that type errors almost invariably reflected either a silly programming error
or a conceptual flaw in the design. The latter was by far the most significant and a
help that 1 had not experienced in the use of more primitive "strong" type systems.
In contrast, | had found Pascal's type system to be worse than useless - a straitjacket
that caused more problems than it solved by forcing me to warp my designs to suit an
implementation-oriented artifact. The contrast | perceived between the rigidity of
Pascal and the flexibility of Simula was essential for the development of C++.
Simula's class concept was seen as the key difference, and ever since | have seen
classes as the proper primary focus of program design.

| had used Simula before (during my studies at the University of Aarhus, Den-
mark), but was very pleasantly surprised by the way the mechanisms of the Simula
language became increasingly helpful as the size of the program increased. The class
and co-routine mechanisms and the comprehensive type checking ensured that prob-
lems and errors did not (as | - and | guess most people - would have expected) grow
more than linearly with the size of the program. Instead, the total program acted more
like a collection of very small programs than a single large program and was therefore
easier to write, comprehend, and debug.

The implementation of Simula, however, did not scae in the same way. As a
result, the whole project came close to disaster. My conclusion at the time was that
the Simula implementation (as opposed to the Simula language) was geared to small
programs and was inherently unsuitable for larger programs [Stroustrup,1979]. Link
times for separately compiled classes were abysmal: It took longer to compile 1/30th
of the program and link it to a precompiled version of the rest than it took to compile
and link the program as a monolith. This | believe, was more a problem with the
mainframe linker than with Simula, but it was still a burden. On top of that, the run-
time performance was such that there was no hope of obtaining useful data from the
simulator. The poor run-time characteristics were a function of the language and its
implementation rather than a function of the application. The overhead problems
were fundamental to Simula and could not be remedied. The cost arose from severa
language features and their interactions: run-time type checking, guaranteed initial-
ization of variables, concurrency support, and garbage collection of both user-
allocated objects and procedure activation records. For example, measurements
showed that more than 80% of the time was spent in the garbage collector despite the
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fact that resource management was part of the simulated system so that no garbage
was ever produced. Simula implementations are better these days (15 years later), but
the order-of-magnitude improvement in run-time performance still has not (to the best
of my knowledge) materialized.

To avoid terminating the project - and thus having to leave Cambridge without a
Ph.D. - | rewrote the simulator in BCPL and ran it on the experimental CAP com-
puter. The experience of coding and debugging the simulator in BCPL
[Richards, 1980] was horrible. BCPL makes C look like a very high-level language
and provides absolutely no type checking or run-time support. The resulting simula-
tor did, however, run suitably fast and gave a whole range of useful results that clari-
fied many issues for me and provided the basis for several papers on operating system
issues [Stroustrup,1978,1979b,1981].

Upon leaving Cambridge, | swore never again to attack a problem with tools as
unsuitable as those | had suffered while designing and implementing the simulator.
The significance of this to C++ was the notion | had evolved of what congtituted a
"suitable tool" for projects such as writing a significant simulator, an operating sys-
tem, and similar systems programming tasks:

[1] A good tool would have Simula's support for program organization - that is,
classes, some form of class hierarchies, some form of support for concurrency,
and strong (that is, static) checking of a type system based on classes. This |
saw (as | still see it today) as support for the process of inventing programs, as
support for design rather than just for implementation.

[2] A good tool would produce programs that run as fast as BCPL programs and
share BCPL's ability to easily combine separately compiled units into a pro-
gram. A simple linkage convention is essential for combining units written in
languages such as C, Algol68, Fortran, BCPL, assembler, etc., into a single
program so that programmers can avoid getting caught by inherent limitations
in a single language.

[3] A good tool should aso allow for highly portable implementations. My expe-
rience was that the "good" implementation | needed would typically not be
available until "next year" and then only on amachine | couldn't afford. This
implied that a tool must have multiple sources of implementations (no mono-
poly would be sufficiently responsive to users of "unusual” machines or to
poor graduate students), that there should be no complicated run-time support
system to port, and that there should be only very limited integration between
the tool and its host operating system.

These criteria were not fully formed when | left Cambridge. Some matured only
on further reflection on my experience with the simulator, on programs written over
the next couple of years, and on the experiences of others that | learned of through
discussions and reading of code. C++ as defined at the time of Release 2.0 strictly ful-
fills these criteria; the fundamental tensions in the effort to design templates and
exception handling mechanisms for C++ arise from the need to depart from some
aspects of these criteria. | think the most important aspect of these criteriais that they
are only loosely connected with specific programming language features. Instead,
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they specify constraints on a solution.

At the time | was there, the Cambridge Computing Laboratory was headed by
Maurice Wilkes. | received my main technical guidance from my supervisor, David
Wheeler, and from Roger Needham. My background in operating systems and my
interest in modularization and communication had permanent effects on C++. The
C++ model of protection, for example, is based on the notion of granting and transfer-
ring access rights; the distinction between initialization and assignment has its root in
thoughts about transferring capabilities;, C++'s notion of const is derived from hard-
ware read/write access protection mechanisms; and the design of C++'s exception
handling mechanism was influenced by work on fault-tolerant systems done by Brian
Randell's group in Newcastle during the seventies.

12 C and Systems Programming

| had briefly encountered C in London in 1975 and acquired some respect for it com-
pared to other languages of the kind referred to as systems programming languages,
machine-oriented languages, or low-level languages. Of those, | knew PL360, Coral,
Mary, and others, but my main experience with languages of this class was BCPL. In
addition to being a BCPL user, | had once implemented BCPL by microcoding its
intermediate form, O-code, so | had a detailed understanding of the low-level ffi-
ciency implications of this class of languages.

After finishing my Ph.D. Thesis in Cambridge and getting ajob at Bell Labs, |
(re)learned C from [Kernighan,1978]. Thus, at the time, | was not a C expert and saw
C primarily as the most modern and prominent example of the systems programming
languages. Only later did | achieve a fuller understanding of C based on personal
experience and discussion with people such as Stu Feldman, Steve Johnson, Brian
Kernighan, and Dennis Ritchie. The general idea of a systems programming language
thus determined the growth of C++ to at least the same extent as did the specific
language-technical details of C.

| knew Algol68 [Woodward, 1974] pretty well from using it for minor projects in
Cambridge. | appreciated the relationship between its constructs and those of C, and
sometimes find it useful to consider C constructs as specialized versions of Algol68's
more general concepts. Curiously enough, | did not see Algol68 as a systems pro-
gramming language (despite having used an operating system written in Algol68). |
suspect the reason was the emphasis | placed on portability, ease of linkage to code
written in other languages, and run-time efficiency. | have on occasion described my
dream language as Algol68 with Simula-like classes. However, for building a practi-
cal tool, C seemed a much better choice than Algol68.
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13 Genera Background

It is often claimed that the structure of a system reflects the structure of the organiza-
tion that created it. Within reason, | subscribe to that idea. It follows that when a sys-
tem is primarily the work of an individual, the system reflects the fundamental out-
look of that individual. In retrospect, | think the overall structure of C++ was shaped
as much by my general "world view" as it was shaped by the detailed computer sci-
ence concepts used to form its individual parts.

| studied pure and applied mathematics so that my Danish "masters degree" (a
Cand.Scient. degree) is in mathematics and computer science. This left me with an
appreciation of the beauty of mathematics, but also with a bias towards mathematics
as a practical tool for problem solving as opposed to an apparently purposeless monu-
ment to abstract truth and beauty. | have a lot of sympathy for the student Euclid
reputedly had evicted for asking, "But what is mathematics for?" Similarly, my
interest in computers and programming languages is fundamentally pragmatic. Com-
puters and programming languages can be appreciated as works of art, but aesthetic
factors should complement and enhance utility, not substitute for or compromise util-
ity.

My long-term (continuous for at least 25 years) hobby is history, and | spent sig-
nificant time in university and later studying philosophy. This has given me a rather
conscious view of where my intellectual sympathies lie and why. Among the long-
standing schools of thought, | fed most at home with the empiricists rather than with
the idealists - the mysticists | just can't appreciate. That is, | tend to prefer Aristotle
to Plato, Hume to Descartes, and shake my head sadly over Pascal. | find comprehen-
sve "systems" like those of Plato and Kant fascinating, yet fundamentally unsatisfy-
ing in that they appear to me dangerously remote from everyday experiences and the
essential peculiarities of individuals.

| find Kierkegaard's almost fanatical concern for the individual and keen psycho-
logical insights much more appealing than the grandiose schemes and concern for
humanity in the abstract of Hegel or Marx. Respect for groups that doesn't include
respect for individuals of those groups isn't respect at all. Many C++ design decisions
have their roots in my dislike for forcing people to do things in some particular way.
In history, some of the worst disasters have been caused by idealists trying to force
people into "doing what is good for them." Such idealism not only leads to suffering
among its innocent victims, but also to delusion and corruption of the idealists apply-
ing the force. | also find idedlists prone to ignore experience and experiment that
inconveniently clashes with dogma or theory. Where ideals clash and sometimes
even when pundits seem to agree, | prefer to provide support that gives the program-
mer achoice.

My preferences in literature have reinforced this unwillingness to make a decision
based on theory and logic aone. In this sense, C++ owes as much to novelists and
essayists such as Martin A. Hansen, Albert Camus, and George Orwell, who never
saw a computer, as it does to computer scientists such as David Gries, Don Knuth,
and Roger Needham. Often, when | was tempted to outlaw a feature | personally
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disliked, | refrained from doing so because | did not think | had the right to force my
views on others. | know that much can be achieved in a relatively short time by the
energetic pursuit of logic and by ruthless condemnation of "bad, outdated, and con-
fused habits of thought." However, the human cost is often high. A high degree of
tolerance and acceptance that different people do think in different ways and strongly
prefer to do things differently is to me far preferable.

My preference is to slowly - often painfully slowly - persuade people to try new
techniques and adapt the ones that suit their needs and tastes. There are effective
techniques for achieving "religious conversions” and "revolutions," but | have fun-
damental qualms about those techniques and grave doubts about their effects in the
long term and on a large scale. Often, if someone can be easily converted to "reli-
gion" X, afurther conversion to "religion" Y is likely, and the gain ephemeral. |
prefer skeptics to "true believers.” | value a small piece of solid evidence over most
theories, and a solid experimental result over most logical arguments.

These views could easily lead to fatalistic acceptance of status quo. After al, one
cannot make an omelet without cracking a few eggs and most people do not actually
want to change - at least "not just now" or in ways that will disrupt their everyday
lives. This is where respect for facts comes in - and a modicum of idealism. Things
in programming and in the world in general realy aren't in a very good state, and
much can be done to improve them. | designed C++ to solve a problem, not to prove
apoint, and it grew to serve its users. The underlying view is that it is possible to
achieve improvements through gradual change. The ideal situation isto maintain the
greatest rate of change that improves the welfare of the individuals involved. The
main difficulties are to determine what constitutes progress, to develop techniques to
smooth transitions, and to avoid excesses caused by over-enthusiasm.

I'm willing to work hard for the adoption of ideas that | have become convinced
will be of help to people. In fact, | consider it the obligation of scientists and intellec-
tuals to ensure that their ideas are made accessible and thus useful to society instead
of being mere playthings for specialists. However, I'm not willing to sacrifice people
to ideas. In particular, | do not try to enforce a single style of design through a nar-
rowly defined programming language. People's ways of thinking and working are so
diverse that an attempt to force a single style would do more harm than good. Thus,
C++ is deliberately designed to support a variety of styles rather than a would-be "one
true way."

Chapter 4 presents the more detailed and practical rules that guided the design of
C++. Inthose rules, you can find the echoes of the general ideas and ideals mentioned
here.

A programming language can be the most important factor in a programmer's day.
However, a programming language is really a very tiny part of the world, and as such,
it ought not be taken too seriously. Keep a sense of proportion and - most impor-
tantly - keep a sense of humor. Among magor programming languages, C++ is the
richest source of puns andjokes. That is ho accident.

Philosophy, like discussion of language features, does tend to get overly serious
and preachy. For this, | apologize, but | felt like acknowledging my intellectual roots
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and | guess thisis harmless - well, mostly harmless. And no, my preferences in liter-
ature are not limited to writers emphasizing philosophical and political themes; those
arejust the ones who left the most obvious traces in the fabric of C++.






2

C with Classes

Soecialization isfor insects.
- RAHeinlein

C++'s immediate predecessor, C with Classes — key design principles —
classes — run-time and space efficiency — the linkage model — dstatic
(strong) type checking — why C? — syntax problems — derived classes
— living without virtual functions and templates — access-control mecha-
nisms — constructors and destructors — my work environment.

2.1 The Birth of C with Classes

The work on what eventually became C++ started with an attempt to analyze the
UNIX kernel to determine how it could be distributed over a network of computers
connected by alocal area network. This work started in April 1979 in the Computing
Science Research Center of Bell Laboratories in Murray Hill, New Jersey. Two sub-
problems soon emerged: how to analyze the network traffic that would result from the
kerndl distribution and how to modularize the kernel. Both required a way to express
the module structure of a complex system and the communication pattern of the mod-
ules. This was exactly the kind of problem that | had become determined never again
to attack without proper tools. Consequently, | set about developing a proper tool
according to the criterial had formed in Cambridge.

In October 1979 | had a running preprocessor, called Cpre, which added Simula-
like classes to C, and by March 1980 this preprocessor had been refined to the point
where it supported one real project and several experiments. My records show the
preprocessor was in use on 16 systems by then. The first key C++ library, the task
system supporting a co-routine style of programming [Stroustrup, 1980b]
[Stroustrup, 1987b] [Shopiro,1987], was cruciad to these projects. The language
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accepted by the preprocessor was called "C with Classes.”

During the April to October period the transition from thinking about a tool to
thinking about a language had occurred, but C with Classes was still thought of pri-
marily as an extension to C for expressing modularity and concurrency. A crucial
decision had been made, though. Even though support of concurrency and Simula-
style simulations was a primary aim of C with Classes, the language contained no
primitives for expressing concurrency; rather, a combination of inheritance (class
hierarchies) and the ability to define class member functions with special meanings
recognized by the preprocessor was used to write the library that supported the desired
styles of concurrency. Please note that "styles" is plural. | considered it crucial - as
| still do - that more than one notion of concurrency should be expressible in the lan-
guage. There are many applications for which support for concurrency is essential,
but there is no one dominant model for concurrency support; thus, when support is
needed, it should be provided through a library or a special-purpose extension so that
aparticular form of concurrency support does not preclude other forms.

The language thus provided general mechanisms for organizing programs, rather
than support for specific application areas. This was what made C with Classes - and
later, C++ - a general-purpose language rather than a C variant with extensions to
support specialized applications. Later, the choice between providing support for spe-
cialized applications or general abstraction mechanisms has come up repeatedly.
Each time the decision has been to improve the abstraction mechanisms. Thus, C++
does not have built-in complex number, string, or matrix types, or direct support for
concurrency, persistence, distributed computing, pattern matching, or file system
manipulation, to mention a few of the most frequently suggested extensions. Instead,
libraries supporting those needs exist.

An early description of C with Classes was published as a Bell Labs technical
report in April 1980 [Stroustrup,1980] and in SIGPLAN Notices [Stroustrup,1982].
A more detailed Bell Labs technical report, Adding Classes to the C Language: An
Exercise in Language Evolution [Stroustrup, 1982b] was published in Software: Prac-
tice and Experience. These papers set a good example by describing only features
that were fully implemented and had been used. This was in accordance with Bell
Labs Computing Science Research Center tradition. That policy was modified only
when more openness about the future of C++ became needed to ensure a free and open
debate over the evolution of C++ among its many non-AT& T users.

C with Classes was explicitly designed to allow better organization of programs;
"computation” was considered a problem solved by C. | was very concerned that
improved program structure was not achieved at the expense of run-time overhead
compared to C. The explicit aim was to match C in terms of run-time, code compact-
ness, and data compactness. To wit: Someone once demonstrated a 3% systematic
decrease in overal run-time efficiency compared with C caused by the use of a spuri-
ous temporary introduced into the function return mechanism by the C with Classes
preprocessor. This was deemed unacceptable and the overhead promptly removed.
Similarly, to ensure layout compatibility with C and thereby avoid space overhead, no
"housekeeping data" was placed in class objects.
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Another major concern was to avoid restrictions on the domain where C with
Classes could be used. The ideal - which was achieved - was that C with Classes
could be used for whatever C could be used for. This implied that in addition to
matching C in efficiency, C with Classes could not provide benefits at the expense of
removing "dangerous” or "ugly" features of C. This observation/principle had to be
repeated often to people (rarely C with Classes users) who wanted C with Classes
made safer by increasing static type checking aong the lines of early Pascal. The
alternative way of providing "safety," inserting run-time checks for all unsafe opera-
tions, was (and is) considered reasonable for debugging environments, but the lan-
guage could not guarantee such checks without leaving C with a large advantage in
run-time and space efficiency. Consequently, such checks were not provided for C
with Classes, athough some C++ environments do provide such checks for debug-
ging. In addition, users can and do insert run-time checks (see §16.10 and [2nd])
where needed and affordable.

C dlows low-level operations, such as bit manipulation and choosing between dif-
ferent sizes of integers. There are also facilities, such as explicit unchecked type con-
versions, for deliberately breaking the type system. C with Classes and later C++ fol-
low this path by retaining the low-level and unsafe features of C. In contrast to C,
C++ systematically eliminates the need to use such features except where they are
essential and performs unsafe operations only at the explicit request of the program-
mer. | strongly fdt then, as | still do, that there is no one right way of writing every
program, and a language designer has no business trying to force programmers to use
aparticular style. The language designer does, on the other hand, have an obligation
to encourage and support a variety of styles and practices that have proven effective
and to provide language features and tools to help programmers avoid the well-known
traps and pitfalls.

2.2 Feature overview

The features provided in the initial 1980 implementation can be summarized:
[1] Classes (82.3)
[2] Derived classes (but no virtual functions yet, §2.9)
[3] Public/private access control (§2.10)
[4 Constructors and destructors (82.11.1)
[5] Cal and return functions (later removed, §2.11.3)
[6] friend classes (82.10)
[71 Type checking and conversion of function arguments (82.6)
During 1981, three more features were added:
[8] Inlinefunctions (§2.4.1)
[9] Default arguments (§2.12.2)
[10] Overloading of the assignment operator (8§2.12.1)
Since a preprocessor was used for the implementation of C with Classes, only new
features (that is, features not present in C) had to be described and the full power of C
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was available to users. Both aspects were appreciated at the time. Having C as a sub-
set dramatically reduced the support and documentation work needed. This was most
important because for several years | did al of the C with Classes and C++ documen-
tation and support in addition to doing the experimentation, design, and implementa-
tion. Having al C features available further ensured that no limitations introduced
through prejudice or lack of foresight on my part would deprive a user of features
already available in C. Naturally, portability to machines supporting C was ensured.
Initially, C with Classes was implemented and used on a DEC PDP/11, but soon it
was ported to machines such as the DEC VAX and Motorola 68000 based machines.

C with Classes was 4till seen as a dialect of C rather than as a separate language.
Furthermore, classes were referred to as "an abstract data type facility" [Strous-
trup,1980]. Support for object-oriented programming was not claimed until the provi-
sion of virtual functions in C++ in 1983 [Stroustrup,1984].

2.3 Classes

Clearly, the most important aspect of C with Classes - and later of C++ - was the
class concept. Many aspects of the C with Classes class concept can be observed by
examining a simple example from [Stroustrup,1980] t:

class stack {
char s[SI ZzE]; /* array of characters */

char* mn; /* pointer to bottomof stack */

char* top; /* pointer to top of stack */

char* max; /* pointer to top of allocated space */

voi d new() ; /* initialize function (constructor) */
public:

void push(char);

char  pop();

b

A class is a user-defined data type. A class specifies the type of class members that
define the representation of a variable of the type (an object of the class), the set of
operations (functions) that manipulate such objects, and the access users have to these
members. Member functions are typicaly defined "elsewhere:"

char stack.pop ()

{
if (top <= mn) error("stack underfl ow');
return *(--top);

}
Objects of class stack can now be defined and used:
T | have retained the original C with Classes syntax and style in the examples. The differences from C++

and modern style should not cause problems with comprehension and may be of interest to some readers. |
have, however, fixed obvious bugs and added comments to compensate for the lack of the original context.
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class stack * pl &s2; /* pl points to s2 */
class stack * p2 new stack; /* p2 points to stack object
allocated on free store */

class stack s1, s2; /* two stack vari ables */

sl. push('h'); /* use object directly */
pl ->push('s"'"); [/* use object through pointer */

Several key design decisions are reflected here:

[1] C with Classes follows Simula in letting the programmer specify types from
which variables (objects) can be created, rather than, say, the Modula approach
of specifying a module as a collection of objects and functions. In C with
Classes (as in C++), aclass is a type (82.9). This is a key notion in C++.
When cl ass means user-defined type in C++, why didn't | cal it type? |
chose class primarily because | dislike inventing new terminology and
found Simula's quite adequate in most cases.

[2] The representation of objects of the user-defined type is part of the class decla
ration. This has far-reaching implications (82.4, §2.5). For example, it means
that true local variables of a user-defined type can be implemented without the
use of free store (also called heap store and dynamic store) or garbage collec-
tion. It also means that a function must be recompiled if the representation of
an object it uses directly is changed. See 813.2 for C++ facilities for express-
ing interfaces that avoid such recompilation.

[3] Compile-time access control is used to restrict access to the representation. By
default, only the functions mentioned in the class declaration can use names of
class members (§2.10). Members (usualy function members) specified in the
public interface - the declarations after the public: label - can be used by
other code.

[4] The full type (including both the return type and the argument types) of a func-
tion is specified for function members. Static (compile-time) type checking is
based on this type specification (§82.6). This differed from C at the time, where
function argument types were neither specified in interfaces nor checked in
calls.

[5] Function definitions are typically specified "elsewhere" to make a class more
like an interface specification than a lexical mechanism for organizing source
code. This implies that separate compilation for class member functions and
their users is easy and the linker technology traditionally used for C is suffi-
cient to support C++ (82.5).

[6] The function new () is a constructor, a function with a special meaning to the
compiler. Such functions provided guarantees about classes (§2.11). In this
case, the guarantee is that the constructor - known somewhat confusingly as a
new-function at the time - is guaranteed to be called to initialize every object
of its class before the first use of the object.

[7] Both pointers and non-pointer types are provided (as in both C and Simula).
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Like C and unlike Simula, pointers can point to objects of both user-defined
and built-in types (82.4).

[8] Like C, objects can be allocated in three ways: on the stack (automatic stor-
age), a a fixed address (static storage), and on the free store (on the heap,
dynamic storage). Unlike C, C with Classes provides specific operators new
and del ete for free store alocation and deallocation (82.11.2).

Much of the further development of C with Classes and C++ can be seen as exploring
the consequences of these design choices, exploiting their good sides, and compensat-
ing for the problems caused by their bad sides. Many, but by no means al, of the
implications of these design choices were understood at the time; [Stroustrap,1980] is
dated April 3, 1980. This section tries to explain what was understood at the time and
gives pointers to sections that explain consequences and later realizations.

24 Run-Time Efficiency

In Simula, it is not possible to have local or global variables of class types; that is,
every object of a class must be allocated on the free store using the new operator.
Measurements of my Cambridge simulator had convinced me this was a mgjor source
of inefficiency. Later, Karel Babcisky from the Norwegian Computer Centre pre-
sented data on Simula run-time performance that confirmed my conjecture [Bab-
cisky,1984]. For that reason alone, | wanted global and local variables of class types.

In addition, having different rules for the creation and scope of built-in and user-
defined types is inelegant, and | felt that on occasion my programming style had been
cramped by the absence of local and global class variables from Simula. Similarly, |
had missed the ability to have pointers to built-in types in Simula, so | wanted the C
notion of pointers to apply uniformly over user-defined and built-in types. This is the
origin of the notion that over the years grew into a rule of thumb for the design of
C++: User-defined and built-in types should behave the same relative to the language
rules and receive the same degree of support from the language and its associated
tools. When the ideal was formulated built-in types received by far the best support,
but C++ has overshot that target so that built-in types now receive dightly inferior
support compared to user-defined types (_temp.impl.rest ).

The initial version of C with Classes did not provide inline functions to take fur-
ther advantage of the availability of the representation. Inline functions were soon
provided, though. The genera reason for the introduction of inline functions was
concern that the cost of crossing a protection barrier would cause people to refrain
from using classes to hide representation. In particular, [Stroustrup, 1982b] observes
that people had made data members public to avoid the function call overhead
incurred by a constructor for simple classes where only one or two assignments are
needed for initialization. The immediate cause for the inclusion of inline functions
into C with Classes was a project that couldn't afford function call overhead for some
classes involved in real-time processing. For classes to be useful in that application,
crossing the protection barrier had to be free. Only the combination of having the
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representation available in the class declaration and having the cals of the public
(interface) functions inlined could deliver that.

Over the years, considerations along these lines grew into the C++ rule that it was
not sufficient to provide a feature, it had to be provided in an affordable form. Most
definitely, affordable was seen as meaning "affordable on hardware common among
developers' as opposed to "affordable to researchers with high-end equipment” or
"affordable in a couple of years when hardware will be cheaper.” C with Classes
was always considered as something to be used now or next month rather than simply
aresearch project to deliver something in a couple of years hence.

241 Inlining

Inlining was considered important for the utility of classes. Therefore, the issue was
more how to provide it than whether to provide it. Two arguments won the day for
the notion of having the programmer select which functions the compiler should try to
inline. First, | had had poor experiences with languages that left the job of inlining to
compilers "because clearly the compiler knows best." The compiler only knows best
if it has been programmed to inline and it has a notion of time/space optimization that
agrees with mine. My experience with other languages was that only "the next
release” would actualy inline, and it would do so according to an internal logic that a
programmer couldn't effectively control. To make matters worse, C (and therefore C
with Classes and later C++) has genuine separate compilation so that a compiler never
has access to more than a small part of the program (82.5). Mining a function for
which you don't know the source appears feasible given advanced linker and opti-
mizer technology, but such technology wasn't available at the time (and till isn't in
most environments). Furthermore, techniques that require global analysis, such as
automatic inlining without user support, tend not to scale well to very large programs.
C with Classes was designed to deliver efficient code given a simple, portable imple-
mentation on traditional systems. Given that, the programmer had to help. Even
today, the choice seemsright.

In C with Classes, only member functions could be inlined and the only way to
request a function to be inlined was to place its body within the class declaration. For
example:

class stack {

[* .0 %]
char pop()
{ if (top <= nin) error("stack underflow");

return *--top;

}
b
The fact that this made class declarations messier was observed at the time and seen
as a good thing in that it discourages overuse of inline functions. The inline key-
word and the ability to inline nonmember functions came with C++. For example, in
C++ one can write the example like this:
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class stack { /I C++
...

char pop();
b

inline char stack::pop() [/ C++

if (top <= min) error("stack underfl ow');
return *--top;

}

Aninlinedirectiveis only ahint that the compiler can and often doesignore. This
is a logical necessity because one can write recursive inline functions that cannot at
compile time be proven not to cause infinite recursions; trying to inline one of those
would lead to infinite compilations. Leaving inline ahintis also apractical advan-
tage because it alows the compiler writer to handle "pathological" cases by simply
not inlining.

C with Classes required - as its successor ill requires - that an inline function
must have a unique definition in a program. Defining a function like pop () above
differently in different compilation units would lead to chaos by subverting the type
system. Given separate compilation, it is extremely hard to guarantee that such sub-
version hasn't taken place in a large system. C with Classes didn't check, and most
C++ implementations till don't try to guarantee that an inline function hasn't been
defined differently in separate compilation units. However, this theoretical problem
has not surfaced as a real problem largely because inline functions tend to be defined
in header files together with classes - and class declarations also need to be unique in
a program.

2.5 The Linkage Modd

The issue of how separately compiled program fragments are linked together is criti-
cal for any programming language and to some extent determines the features the lan-
guage can provide. One of the critical influences on the development of C with
Classes and C++ was the decision that
[1] Separate compilation should be possible with traditional C/Fortran UNIX/DOS
style linkers.
[2] Linkage should be type safe.
[3] Linkage should not require any form of database (although one could be used
to improve a given implementation).
[4] Linkage to program fragments written in other languages such as C, assembler,
and Fortran should be easy and efficient.
C uses header files to ensure consistent separate compilation. Declarations of data
structure layouts, functions, variables, and constants are placed in header files that are
typically textualy included into every source file that needs the declarations.
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Consistency is ensured by placing adequate information in the header files and ensur-
ing that the header files are consistently included. C++ follows this model up to a
point.

The reason that layout information can be present in a C++ class declaration
(though it doesn't have to be; see §13.2) is to ensure that the declaration and use of
true local variables is easy and efficient. For example:

void f()

{
cl ass stack s;
int c;
s.push('h');
c = s.pop();

}

Using the stack declaration from §2.3 and 8§2.4.1, even a simple-minded C with
Classes implementation can ensure that no use is made of free store for this example,
that the call of pop () isinlined so that no function call overhead is incurred and that
the non-inlined call of push () can invoke a separately compiled function. In this,
C++ resembles Ada

At the time, | felt there was a trade-off between having separate interface and
implementation declarations (as in Modula-2) plus atool (linker) to match them up,
and having a single class declaration plus atool (a dependency analyzer) that consid-
ered the interface part separately from the implementation details for the purposes of
recompilation. It appears | underestimated the complexity of the latter and that the
proponents of the former approach underestimate the cost (in terms of porting prob-
lems and run-time overhead) of the former.

| aso made matters worse for the C++ community by not properly explaining the
use of derived classes to achieve the separation of interface and implementation. |
tried (see for example [Stroustrup,1986,87.6.2]), but somehow | never got the mes-
sage across. | think the reason for this failure was primarily that it never occurred to
me that many (most?) C++ programmers and non-C++ programmers looking at C++
thought that because you could put the representation right in the class declaration
that specified the interface, you had to.

I made no attempt to provide tools to enforce type-safe linkage for C with Classes;
that had to wait for Release 2.0 of C++. However, | remember talking to Dennis
Ritchie and Steve Johnson to establish that type safety across compilation boundaries
was considered a part of C. We just lacked the means of enforcement for real pro-
grams and had to rely on tools such as Lint [Kernighan,1984].

In particular, Steve Johnson and Dennis Ritchie affirmed that C was intended to
have name equivalence rather than structural equivalence. For example:

struct A{ int x, y; };
struct B{ int x, y; };

defines two incompatible types A and B. Further:
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struct C{ int x, y; }; // infile 1
struct C{ int x, y; }; [/l infile 2

defines two different types, both called C, and a compiler that can do checking across
compilation unit boundaries should give a "double definition" error. The reason for
this rule is to minimize maintenance problems. Such identical declarations are
unlikely to occur except through copying. Once copied into different source files,
however, the declarations are unlikely to stay identical forever. The moment one dec-
laration - and not the other - is changed, the program will mysteriously fail to work
correctly.

As a practical matter, C and therefore C++ guarantees that similar structures such
as A and B have similar layout so that it is possible to convert between them and use
them in the obvious manner:

extern f(struct A*) ;

void g(struct A* pa, struct B* pb)

{
f(pa); [* fine */
f(pb); [/* error: A* expected */
pa = pb; /* error: A* expected */
pa = (struct A*)pb; /* ok: explicit conversion */
pb->x = 1;
if (pa->x !=pb->x) error("bad i npl ementation");
}

Name equivalence is the bedrock of the C++ type system and the layout compatibility
rules ensure that explicit conversions can be used to provide low-level services that in
other languages have been supplied through structural equivalence. | prefer name
equivalence over structural equivalence because | consider it the safest and cleanest
model. | was therefore pleased to find that this decision didn't get me into compati-
bility problems with C and didn't complicate the provision of low-level services.

This later grew into the "one-definition rule:" every function, variable, type, con-
stant, etc., in C++ has exactly one definition.

251 Simple-Minded Implementations

The concern for smple-minded implementations was partly a necessity caused by the
lack of resources for developing C with Classes and partly a distrust of languages and
mechanisms that required clever techniques. An early formulation of a design goal
was that C with Classes "should be implementable without using an algorithm more
complicated than a linear search." Wherever that rule of thumb was violated - as in
the case of function overloading (811.2) - it led to semantics that were more compli-
cated than | felt comfortable with. Frequently, it also led to implementation
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complications.

The aim - based on my Simula experience - was to design a language that would
be easy enough to understand to attract users and easy enough to implement to attract
implementers. A relatively simple implementation had to be able to deliver code that
compared favorably with C code in correctness, run-time speed, and code size. A rel-
atively novice user in a relatively unsupportive programming environment had to be
able to use this implementation for real projects. Only when both of these criteria
were met could C with Classes and later C++ expect to survive in competition with C.
An early formulation of that principle was that "C with Classes has to be a weed like
C or Fortran because we cannot afford to take care of arose like Algol68 or Simula.
If we deliver an implementation and go away for a year, we want to find severa sys-
tems running when we come back. That will not happen if complicated maintenance
is needed or if a simple port to a new machine takes more than a week."

This was part of a philosophy of fostering self-sufficiency among users. The aim
was always - and explicitly - to develop loca expertise in all aspects of using C++.
Most organizations must follow the opposite strategy. They keep users dependent on
services that generate revenues for a central support organization, consultants, or both.
In my opinion, this contrast is a fundamental difference between C++ and many other
languages.

The decision to work in the relatively primitive - and almost universaly available
- framework of the C linking facilities caused the fundamental problem that a C++
compiler must always work with only partial information about a program. An
assumption made about a program could possibly be violated by a program written
tomorrow in some other language (such as C, Fortran, or assembler) and linked in -
possibly after the program has started executing. This problem surfaces in many con-
texts. It is hard for an implementation to guarantee that

[1] Something is unique.

[2] Information is consistent (in particular, that type information is consistent).

[3] Something isinitialized.

In addition, C provides only the feeblest support for the notion of separate name-
spaces so that avoiding namespace pollution by separately written program segments
becomes aproblem. Over the years, C++ has tried to face al of these challenges with-
out departing from the fundamental model and technology that gives portability and
efficiency, but in the C with Classes days we simply relied on the C technique of
header files.

Through the acceptance of the C linker came another rule of thumb for the devel-
opment of C++: C++ isjust one language in a system and not a complete system. In
other words, C++ accepts the role of a traditional programming language with a fun-
damental distinction between the language, the operating system, and other important
parts of the programmer's world. This delimits the role of the language in a way that
is hard to do for alanguage, such as Smalltalk or Lisp, that is conceived as a complete
system or environment. It makes it essential that a C++ program fragment can call
program fragments written in other languages and that a C++ program fragment can
itself be called by program fragments written in other languages. Being "just a
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language" aso alows C++ implementations to benefit directly from tools written for
other languages.

The need for a programming language and the code written in it to bejust acog in
a much larger machine is of utmost importance to most industrial users. Yet such
coexistence with other languages and systems was apparently not a magor concern to
most theoreticians, would-be perfectionists, and academic users. | believe this to be
one of the main reasons for C++'s success.

C with Classes was amost source-compatible with C. However, it was never
100% C compatible; for example, words such as cl ass and new are perfectly good
identifier names in C, but they are keywords in C with Classes and its successors. It
was, however, link compatible. C functions could be called from C with Classes, C
with Classes functions could be called from C, a struct had the same layout in both
languages so that passing both simple and composite objects between the languages
was simple and efficient. This link compatibility has been maintained for C++ (with a
few simple and explicit exceptions that can be avoided by programmers when neces-
sary (83.5.1). Over the years, my experience and that of my colleagues has been that
link compatibility is much more important than source compatibility. This, at least, is
the case when identical source code gives the same results on both C and C++ or alter-
natively fails to compile or link in one of the languages.

2.5.2 The Object Layout Model

The basic model of an object was fundamental to the design of C with Classes in the
sense that | always maintained a clear view of what an object looked like in memory
and considered how language features affected operations on such objects. The evo-
[ution of the object model is fundamentd to the evolution of C++.

A C with Classes object was smply aC structure. Thus, the layout of

class stack {
char s[10];
char* m n;
char* top;
char* nmax;
void new();

public:
void push();
char pop();

¥

is the same as for

struct stack { /* generated C code */
char s[10];
char* m n;
char* top;
char* nmax;

b
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that is

char s[10]
char* mn
char* top
char* max

A compiler may add some "padding" between and &fter the members for alignment,
but otherwise the size of the object is the sum of the sizes of the members. Thus,
memory usage is minimized.

Run-time overhead is similarly minimized by a direct mapping from a call of a
member function

voi d stack. push(char c)

{
if (top>max) error("stack overflow');
*top++ = c;

}

void g(class stack* p)

{
p->push('c);

}

to the call of an equivalent C function in the generated code:

void stack push(this,c) /* generated C code */
struct stack* this;
char c;

{
if ((this->top)>(this->max)) error("stack overflow');
*(this->top)++ = c;

}

void g(p) struct stack* p; /* generated C code */

{
}

In every member function, a pointer called this refers to the object for which the
member function was called. Stu Feldman remembers that in the very first C with
Classes implementation, the programmer couldn't refer directly to this. After he
pointed that out to me, | promptly remedied the problem. Without this or some
equivalent mechanism, member functions cannot be used for linked list manipulation.

The this pointer is C++'s version of the Simula THIS reference. Sometimes,
people ask why this is apointer rather than a reference and why it is called this
rather than self. When this was introduced into C with Classes, the language

stack _push(p, 'c');
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didn't have references, and C++ borrows its terminology from Simula rather than
from Smalltalk.

Had stack.push() been declared inline, the generated code would have
looked like this:

void g(p) /* generated C code */
struct stack* p;

{
if ((p->top)>(p->max)) error("stack overflow"');
*(p->top)++ = 'c';

}

This is of course exactly the code a programmer would have written in C.

2.6 Static Type Checking

| have no recollection of discussions, no design notes, and no recollection of any
implementation problems concerning the introduction of static ("strong") type
checking into C with Classes. The C with Classes syntax and rules, the ones subse-
quently adopted for the ANS| C standard, simply appeared fully formed in the first C
with Classes implementation. After that, a minor series of experiments led to the cur-
rent (stricter) C++ rules. Static type checking was to me, after my experience with
Simula and Algol68, a smple must and the only question was exactly how it was to
be added.

To avoid breaking C code, | decided to alow the call of an undeclared function
and not perform type checking on such undeclared functions. This was of course a
major hole in the type system, and severa attempts were made to decrease its impor-
tance as the major source of programming errors before finaly - in C++ - the hole
was closed by making a call of an undeclared function illegal. One simple observa-
tion defeated al attempts to compromise, and thus maintain a greater degree of C
compatibility: As programmers learned C with Classes, they lost the ability to find
run-time errors caused by simple type errors. Having come to rely on the type check-
ing and type conversion provided by C with Classes, they lost the ability to quickly
find the slly errors that creep into C programs through the lack of checking. Further,
they failed to take the precautions against such silly errors that good C programmers
take as a matter of course. After all, "such errors don't happen in C with Classes."
Thus, as the frequency of run-time errors caused by uncaught argument type errors
decreases, their seriousness and the time spent finding them increases. The result was
serioudly annoyed programmers demanding further tightening of the type system.

The most interesting experiment with "incomplete static checking” was the tech-
nique of allowing calls of undeclared functions, but noting the type of the arguments
used so that a consistency check could be done when further calls were seen. When
Walter Bright many years later independently discovered this trick he named it
autoprototyping, using the ANSI C term prototype for a function declaration. The
experience was that autoprototyping caught many errors and initially increased a
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programmer's confidence in the type system. However, since consistent errors and
errors in afunction called only once in a compilation were not caught, autoprototyp-
ing ultimately destroyed programmer confidence in the type checker and induced a
sense of paranoia even worse than | have seen in C or BCPL programmers.

C with Classes introduced the notation f (void) for a function f that takes no
arguments as a contrast to f () that in C declares a function that can take any number
of arguments of any type without any type check. My users soon convinced me, how-
ever, that the f (void) notation wasn't elegant, and that having functions declared
f () accept arguments wasn't intuitive. Consequently, the result of the experiment
was to have f () mean a function f that takes no arguments, as any novice would
expect. It took support from both Doug Mcllroy and Dennis Ritchie for me to build
up the courage to make this break from C. Only after they used the word abomination
about f (void) did | dare give f () the obvious meaning. However, to this day, C's
type rules are much more lax than C++'s, and ANSI C adopted "the abominable
f (void) " from C with Classes.

2.6.1 Narrowing Conversions

Another early attempt to tighten C with Classes' type rules was to disallow "informa-
tion destroying” implicit conversions. Like others, | had been badly bitten by exam-
ples equivalent to (but naturally not as easy to spot in areal program) as these:

void f()
{
long int Ing = 65000;
int il =1Ing; /* il becones negative (-536) */
/* on machines with 16 bit ints */

int i2
char ¢

257;
i2; /* truncates: c becones 1 */
/* on machines with 8 bit chars */

}

| decided to try to ban all conversions that were not value preserving, that is, to
require an explicit conversion operator wherever a larger object was stored into a
smaller:

void g(long Ing, int i) /* experiment */

{
int il = Ing; /* error: narrow ng conversion */
il = (int)lng; [/* truncates for 16 bit ints */
char ¢ = i; /* error: narrow ng conversion */
¢ = (char)i; /* truncates */
}

The experiment failed miserably. Every C program | looked at contained large num-
bers of assignments of intsto char variables. Naturaly, since these were working
programs, most of these assignments were perfectly safe. That is, either the value was
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smal enough not to become truncated, or the truncation was expected or at least
harmless in that particular context. There was no willingness in the C with Classes
community to make such a break from C. I'm till looking for ways to compensate
for these problems (814.3.5.2).

2.6.2 Use of Warnings

| considered introducing run-time checks for the vaues assigned, but that would
imply a high cost in time and code size, and also detect the problems far too late for
my taste. Therefore, run-time checks for conversions - and more importantly, in gen-
eral - were relegated to the category of "ideas for future debugging support.”
Instead, | used a technique that was to become standard for dealing with what | con-
sidered deficiencies in the C language that were too serious to ignore, but too
ingrained in the structure of C to remove. | made the C with Classes preprocessor
(and later my C++ compiler) issue warnings:

void f(long Ing, int i)

{
int il = 1ng; [/ inmplicit conversion: warning
il = (int)lng; // explicit conversion: no warning
char ¢ = i; /1 too common to repair: no warning
}

Unconditional warnings were (and till are) issued for long->int and double->int con-
versions, because | redly don't see any excuse for having such conversions legal.
They are smply a result of the historical accident that floating point arithmetic was
introduced into C before explicit conversions were. | have had no complaints about
these warnings, and | and others have been saved by them many times. The int->char
conversion, however, | didn't fed able to do anything about. To this day, such con-
versions pass the AT& T C++ compiler without even awarning.

The reason for this is that | decided to use unconditional warnings exclusively for
things that "had a higher than 90% chance of actually catching an error." This
reflected the experience that C-compiler and Lint warnings more often than not are
"wrong" in the sense that they warn against something that doesn't in fact cause the
program to misbehave. This leads programmers to ignore warnings from C compilers
or to heed them only under protest. My intent was to ensure that ignoring a C++
warning would be seen as a dangerous folly; | fed | succeeded. Thus, warnings are
used to compensate for problems that cannot be fixed through language changes
because of C compatibility requirements and also as a way of easing the transition
from C to C++. For example:

class X {
/1

}
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glint i, int x, int j)
/1 war ni ng: class X defined as return type for g()
/1 (did you forget a ';' after "}' ?)
/1 warning: j not used
{
if (i =7) { [/ warning: constant assignnent
/] in condition
...
}
/1. ..
if (x&77 ==0) { [// warning: == expression
/'l as operand for &
/...
}

}

Even the first Cfront release (83.3) produced these warnings. They were the result of
adesign decision and not an afterthought.

Much later, the first of these warnings was made into an error by banning the defi-
nition of new types in return types and argument types.

27 Why C?

A common question at C with Classes presentations was "Why use C? Why didn't
you build on, say, Pascal?’ One version of my answer can be found in
[Stroustrup,1986c]:
"C is clearly not the cleanest language ever designed nor the easiest to use so why
do so many people use it?

[1] Cisflexible: It is possible to apply C to most every application area and to
use most every programming technique with C. The language has no
inherent limitations that preclude particular kinds of programs from being
written.

[2] Ciséfficient. The semantics of C are "low level”; that is, the fundamental
concepts of C mirror the fundamental concepts of a traditional computer.
Consequently, it is relatively easy for a compiler and/or a programmer to
efficiently utilize hardware resources for C programs.

[3] Cisavailable: Given a computer, whether the tiniest micro or the largest
super-computer, chances are that there is an acceptable quality C compiler
available and that that C compiler supports an acceptably complete and
standard C language and library. Libraries and support tools are also avail-
able, so that a programmer rarely needs to design a new system from
scratch.

[4] Cisportable: A C program is not automatically portable from one machine
(and operating system) to another, nor is such a port necessarily easy to do.
It is, however, usualy possible and the level of difficulty is such that
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porting even major pieces of software with inherent machine dependences
is typically technically and economically feasible.

Compared with these first-order advantages, the second-order drawbacks like the

curious C declarator syntax and the lack of safety of some language constructs

become less important. Designing "a better C" implies compensating for the
major problems involved in writing, debugging, and maintaining C programs
without compromising the advantages of C. C++ preserves al these advantages
and compatibility with C at the cost of abandoning claims to perfection and of
some compiler and language complexity. However, designing a language from
scratch does not ensure perfection and the C++ compilers compare favorably in
run-time, have better error detection and reporting, and equal the C compilers in
code quality."
This formulation is more polished than | could have managed in the early C with
Classes days, but it does capture the essence of what | considered important about C
and that | did not want to lose in C with Classes. Pascal was considered a toy lan-
guage [Kernighan,1981], so it seemed easier and safer to add type checking to C than
to add the features considered necessary for systems programming to Pascal. At the
time, | had a positive dread of making mistakes of the sort where the designer, out of
misguided paternalism or plain ignorance, makes the language unusable for real work
in important areas. The ten years that followed clearly showed that choosing C as a
base left me in the mainstream of systems programming where | intended to be. The
cost in language complexity has been considerable, but manageable.

At the time, | considered Modula-2, Ada, Smalltalk, Mesa [Mitchell, 1979], and
Clu as dternatives to C and as sources for ideas for C++ [Stroustrup, 1984c] so there
was no shortage of inspiration. However, only C, Simula, Algol68, and in one case
BCPL left noticeable traces in C++ asreleased in 1985. Simula gave classes, Algol68
operator overloading (83.6), references (83.7), and the ability to declare variables any-
where in a block (83.11.5), and BCPL gave // comments (83.11.1).

There were several reasons for avoiding major departures from C style. | saw the
merging of C's strengths as a systems programming language with Simula's strengths
for organizing programs as a significant challenge in itsdf. Adding significant fea-
tures from other sources could easily lead to a "shopping list" language and destroy
the integrity of the resulting language. To quote from [Stroustrup, 1986]:

"A programming language serves two related purposes: it provides a vehicle for

the programmer to specify actions to be executed and a set of concepts for the pro-

grammer to use when thinking about what can be done. The first aspect ideally
requires alanguage that is "close to the machine," so that all important aspects of

a machine are handled simply and efficiently in a way that is reasonably obvious

to the programmer. The C language was primarily designed with this in mind.

The second aspect ideally requires a language that is "close to the problem to be

solved" so that the concepts of a solution can be expressed directly and concisely.

The fecilities added to C to create C++ were primarily designed with this in

mind."

Again, this formulation is more polished than | could have managed during the early
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stages of the design of C with Classes, but the general idea was clear. Departures
from the known and proven techniques of C and Simula would have to wait for fur-
ther experience with C with Classes and C++ and for further experiments. | firmly
believe - and believed then - that language design is not just design from first princi-
ples, but an art that requires experience, experiments, and sound engineering trade-
offs. Adding a mgor feature or concept to a language should not be a leap of faith,
but a deliberate action based on experience and fitting into a framework of other fea
tures and ideas of how the resulting language can be used. The post-1985 evolution
of C++ shows the influence of ideas from Ada (templates, 815; exceptions, §16;
namespaces, 8§17), Clu (exceptions, §16), and ML (exceptions, §16).

2.8 Syntax Problems

Could | have "fixed" the most annoying deficiencies of the C syntax and semantics
at some point before C++ was made generally available? Could | have done so with-
out removing useful features (to C with Classes users in their environments - as
opposed to an ideal world) or introducing incompatibilities that were unacceptable to
C programmers wanting to migrate to C with Classes? | think not. In some cases, |
tried, but | backed out my changes after receiving complaints from outraged users.

2.8.1 The C Declaration Syntax

The part of the C syntax | disliked most was the declaration syntax. Having both pre-
fix and postfix declarator operators is the source of a fair amount of confusion. For
example:

int *p[10]; /* array of 10 pointers to int, or */
/* pointer to array of 10 ints? */

Allowing the type specifier to be omitted (meaning i nt by default) also led to com-
plications. For example:

/* C style (proposed banned): */

static a; /* inplicit: type of "a is int */
f(); /* inplicit: returns int */

/1 proposed Cwith O asses style:
static int a;
int f();

The negative reaction to changes in this area from users was very strong. They con-
sidered the "terseness" allowed by C essentia to the point of refusing to use a "fas-
cist" language that required them to write redundant type specifiers. | backed out the
change. | don't think | had a choice. Allowing that implicit int is the source of,
many of the annoying problems with the C++ grammar today. Note that the pressure
came from users, not management or arm-chair language experts. Finaly, ten years
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later, the C++ ANSI/ISO standard committee (86) has decided to deprecate implicit
int. That means that we may get rid of it in another decade or so. With the help of
tools and compiler warnings, individual users can now start protecting themselves
from confusions caused by implicit i nt, such as

void f(const T); // const argunent of type T, or
// const int argument nanmed T?
/Il (it's a const argunment of type T)

The function definition syntax with the argument types within the function parenthe-
ses was, however, used for C with Classes and C++, and later adopted for ANSI C:

f(a,b) char b; /* K&R C style function definition */
{

[* o0 %
}

int f(int a, char b) /] C++ style function definition

{
...

}

Similarly, | considered the possibility of introducing a linear notation for declarators.
The C trick of having the declaration of a name mimic its use leads to declarations
that are hard to read and write, and maximizes the opportunity for humans and pro-
grams to confuse declarations and expressions. Many people had observed that the
problem with C's declarator syntax was that the declarator operator * ("pointer to")
is prefix, whereas the declarator operators [] ("array of") and () ("function return-
ing") are postfix. This forces people to use parentheses to disambiguate cases such
as:

/* C style: */
int* v[10]; [* array of pointers to ints */
int (*p [10]; /* pointer to array of ints */

Together with Doug Mcllroy, Andrew Koenig, Jonathan Shopiro, and others | consid-
ered introducing postfix "pointer to" operator -> as an alternative to the prefix *:

/1 radical alternative:
v: [10]->int ; // array of pointers to ints
p: ->[10]int; // pointer to array of ints

/1 less radical alternative:
int v[10]->; [/l array of pointers to ints
int p->[10]; // pointer to array of ints

The less radical aternative has the advantage of allowing the postfix -> declarator to
coexist with the prefix * declarator during a transition period. After a transition
period the * declarator and the redundant parentheses could have been removed from
the language. A noticeable benefit of this scheme is that parentheses are only needed
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to express "function” so that an opportunity for confusion and grammar subtleties
could be removed (see aso [Sethi, 1981]). Having al declarator operators postfix
would ensure that declarations can be read from left to right. For example:

int f(char)->[10]->(double)->;

meaning afunction f returning a pointer to an array of pointers to functions returning
a pointer to int. Try to write that in straight C/C++!  Unfortunately, | fumbled the
idea and didn't ever deliver a complete implementation. Instead, people build up
complicated types incrementally using typedef:

typedef int* Dtol (double); // function taking a double and
// returning a pointer to int

typedef Dtol* V10[10]; [/ array of 10 pointers to Dtol

V10* f(char); /1 f takes a char and returns
/1 a pointer to V10

My eventua rationale for leaving things as they were was that any new syntax
would (temporarily at least) add complexity to a known mess. Also, even though the
old style is aboon to teachers of trivia and to people who want to ridicule C, itis not a
significant problem for C programmers. In this case, I'm not sure if | did the right
thing, though. The agony to me and other C++ implementers, documenters, and tool
builders caused by the perversities of syntax has been significant. Users can - and do
- of course insulate themselves from such problems by writing in a small and easily
understood subset of the C/C++ declaration syntax (87.2).

2.8.2 Structure Tagsvs. Type Names

A significant syntactic simplification for the benefit of users was introduced into C++
at the cost of some extra work to implementers and some C compatibility problems.
In C, the name of a structure, a "structure tag,” must always be preceded by the key-
word struct. For example

struct buffer a; /* "struct' is necessary in C */

In the context of C with Classes, this had annoyed me for some time because it made
user-defined types second-class citizens syntactically. Given my lack of success with
other attempts to clean up the syntax, | was reluctant and only made the change - at
the time C with Classes evolved into C++ - at the urging of Tom Cargill. The name
of astruct, union, or class is atype name in C++ and requires no special syn-
tactic identification:

buffer a /Il C+

The resulting fights over C compatibility lasted for years (see also 83.12). For exam-
ple, the following is legal C:

struct S { int a; };
int S
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void f(struct S x)
{

}

It is also legal C with Classes and legal C++, yet for years we struggled to find a for-
mulation that would allow such (marginally crazy, but harmless) examples in C++ for
compatibility. Allowing such examples implies that we must reject

Xx.a = S; // Sis an int variable

void g(Sx) // error: Sis an int variable

{
}

The real need to address this particular issue came from the fact that some standard
UNIX header files, notably, stat.h, rely on a struct and a variable or function
having the same name. Such compatibility issues are important and a delight for lan-
guage lawyers. Unfortunately, until a satisfactory - and usualy trivially simple -
solution is found, such problems absorb an undesirable amount of time and energy.
Once a solution is found, a compatibility problem becomes indescribably boring
because it has no inherent intellectual value, only practical importance. The C++
solution to the C multiple namespace problem is that a name can denote a class and
also afunction or avariable. If it does, the name denotes the non-class unless explic-
itly qudified by one of the keywords struct, class, and union.

Dealing with stubborn old-time C users, would-be C experts, and genuine C/C++
compatibility issues has been one of the most difficult and frustrating aspects of
developing C++. It till is.

Xx.a = S; // Sis an int variable

2.8.3 The Importance of Syntax

I am of the opinion that most people focus on syntax issues to the detriment of type
issues. The critical issues in the design of C++ were always those of type, ambiguity,
and access control, not those of syntax.

It is not that syntax isn't important; it is immensely important because the syntax
is quite literally what people see. A well-chosen syntax significantly helps program-
mers learn new concepts and avoids silly errors by making them harder to express
than their correct alternatives. However, the syntax of a language should be designed
to follow the semantic notions of the language, not the other way around. This
implies that language discussions should focus on what can be expressed rather than
how it is expressed. An answer to the what often yields an answer to the how,
whereas afocus on syntax usually degenerates into an argument over personal taste.

A subtle aspect of C compatibility discussions is that old-time C programmers are
comfortable with the old ways of doing things and can therefore be quite intolerant of
the incompatibilities needed to support styles of programming that C wasn't designed
for. Conversely, non-C programmers usually underestimate the value that C program-
mers attribute to the C syntax.
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29 Derived Classes

The derived class concept is C++'s version of Simula's prefixed class notion and thus
a sibling of Smalltalk's subclass concept. The names derived and base were chosen
because | never could remember what was sub and what was super and observed that
| was not the only one with this particular problem. | also noted that many people
found it counterintuitive that a subclass typically has more information than its super-
class. In inventing the terms derived class and base class, | departed from my usual
principle of not inventing new names where old ones exist. In my defense, | note that
| have never observed any confusion about what is base and what is derived among
C++ programmers, and that the terms are trivially easy to learn even for people who
don't have a grounding in mathematics.

The C with Classes concept was provided without any form of run-time support.
In particular, the Simula (and later C++) concept of a virtual function was missing.
The reason for this was that | - with good reason, | think - doubted my ability to
teach people how to use them, and even more, my ability to convince people that a
virtual function is as efficient in time and space as an ordinary function as typically
used. Often, people with Simula and Smalltalk experience still don't quite believe
that until they have had the C++ implementation explained to them in detail - and
many still harbor irrational doubts after that.

Even without virtual functions, derived classes in C with Classes were useful for
building new data structures out of old ones and for associating operations with the
resulting types. In particular, they alowed list and task classes to be defined
[Stroustrup,1980,1982b].

2.9.1 Polymorphism without Virtual Functions

In the absence of virtual functions, a user could use objects of a derived class and treat
base classes as implementation details. For example, given a vector class with ele-
ments indexed from O and no range checking:

class vector {

[

int get_elen(int i);
b

one can build arange-checked vector with elements in a specified range:

class vec : vector {
int hi, |o;

public:
[* .0 %
newm(int lo, int hi);
get _elem(int i);

¥
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int vec.get_elem(int i)

{
if (i<lo || hi<i) error("range error");
return vector.get_elemi-1o0);

}

Alternatively, an explicit type field could be introduced in a base class and used
together with explicit type casts. The former strategy was used where the user only
sees specific derived classes and "the system” sees only the base classes. The latter
strategy was used for various application classes where, in effect, a base class was
used to implement a variant record for a set of derived classes.

For example, [Stroustrup, 1982b] presents this ugly code for retrieving an object
from atable and using it based on atype field:

class elem{ /* properties to be put "into a table */ };
class table { /* table data and | ookup functions */ };

class cl_name * cl; /* cl_nane is derived fromelem*/
cl ass po_nanme * po; /* po_nane is derived fromelem */
cl ass hashed * table; /* hashed is derived fromtable */

elem* p = tabl e->l ook("carrot");

if (P {
switch (p->type) { /* type field in elemobjects */
case PO_NAME:
po = (class po_nane *) p; /* explicit type conversion */

br eak;
case CL_NAME:
cl = (class cl_nane *) p; /* explicit type conversion */
br eak;
defaul t:
error ("unknown type of elenent");
}
}
el se

error("carrot not defined");

Much of the effort in C with Classes and C++ has been to ensure that programmers
needn't write such code.

2.9.2 Container Classes Without Templates

Most important in my thinking at the time and in my own code was the combination
of base classes, explicit type conversions, and (occasionally) macros to provide gen-
eric container classes. For example, [Stroustrup, 1982b] demonstrates how a list that
holds objects of a single type can be built from alist of 1inks:
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class wordlink : link

{ char wor d[ Sl ZE] ;
public:
voi d cl ear (void);
class wordlink * get(void)
{ return (class wordlink *) link.get(); };
voi d put (class wordlink * p) { link.put(p); };
b
Because every link that is put () onto a list through a wordlink must be a
wordlink, it is sofe to cast every link that is taken off the list using get () back
toawordlink. Note the use of private inheritance (the default in the absence of the
keyword public in the specification of the base class link; 82.10). Allowing a
wordlink to beused as aplain | i nk would have compromised type safety.
Macros were used to provide generic types. Quoting from [Stroustrup,1982b:
"The class stack example in the introduction explicitly defined the stack to be a
stack of characters. That is sometimes too specific. What if a stack of long inte-
gers was also needed? What if a class stack was needed for alibrary so that the
actua stack element type could not be known in advance? In these cases the class
stack declaration and its associated function declarations should be written so
that the element type can be provided as an argument when a stack is created in
the same way as the size was.
There is no direct language support for this, but the effect can be achieved
through the facilities of the standard C preprocessor. For example:

cl ass ELEM stack ({
ELEM* min, * top, * nax;
void new(int), delete(void);
public:
voi d push( ELEM ;
ELEMpop(voi d);
b
This declaration can then be placed in a header file and macro-expanded once for
each type ELEM for which it is used:

#defi ne ELEM | ong

#define ELEM stack |ong_stack
#i ncl ude "stack. h"

#undef ELEM

#undef ELEM st ack

typedef class x X

#define ELEM X

#defi ne ELEM stack X stack
#i ncl ude "stack.h"



52 Cwith Classss Chapt er 2

#undef ELEM
#undef ELEM st ack

class long_stack | s(1024);
class long_stack |1s2(512);
class X _stack xs(512);

This is certainly not perfect, but it is simple.”
This was one of the earliest and crudest techniques. It proved too error-prone for real
use, so | soon defined a few "standard" token-pasting macros and recommended a
stylized macro usage based on them for generic classes [Stroustrup,1986,87.3.5].
Eventualy, these techniques matured into C++'s template facility and the techniques

for using templates together with base classes to express commonality among instanti-
ated templates (815.5).

2.9.3 The Object Layout Model

The implementation of derived classes was ssimply concatenation of the members of
the base and derived classes. For example, given:

class A {
int a;
public:
/* menber functions */

b

class B : public A {
int b;
public:
/* menber functions */
b
an object of class B will be represented by a structure:

struct B { /* generated C code */
int a;
int b;

that is

int a
int b

Name clashes between base members and derived members are handled by the com-
piler internally assigning suitably unambiguous names to the members. Calls are han-
died exactly as when no derivation is used. No added overhead in time or space is
imposed relative to C.
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2.9.4 Retrospective

Was it reasonable to avoid virtual functions in C with Classes? Y es, the language was
useful without them, and their absence postponed time-consuming debates about their
utility, proper use, and efficiency. Their absence led to development of language
mechanisms and techniques that have proven useful even in the presence of more
powerful inheritance mechanisms and provided a counterweight to the tendency of
some programmers to use inheritance to the exclusion of al other techniques (see
§14.2.3). In particular, classes were used to implement concrete types, such as
complex and string, and interface classes became popular. A class stack used
as an interface to amore genera class dequeue is an example of inheritance without
virtua functions.

Were virtual functions needed for C with Classes to serve the needs it aimed to
serve? Yes, and therefore they were added as the first mgjor extension to make C++.

2.10 The Protection Modd

Before starting work on C with Classes, | worked with operating systems. The
notions of protection from the Cambridge CAP computer and similar systems - rather
than any work in programming languages - inspired the C++ protection mechanisms.
The class is the unit of protection and the fundamental rule is that you cannot grant
yourself access to a class; only the declarations placed in the class declaration (sup-
posedly by its owner) can grant access. By default, al information is private.

Access is granted by declaring a member in the public part of a class declaration,
or by specifying afunction or aclass as a friend. For example:

class X {
/* representation */
public:
void f(); /* menmber function with access */

/* to representation */

friend void g(); /* global function with access */
/* to representation */

b
Initially, only classes could be friends, thus granting access to al member functions of
the friend class, but later it was found convenient to be able to grant access (friend-
ship) to individual functions. In particular, it was found useful to be able to grant
access to global functions; see also §3.6.1.

A friendship declaration was seen as a mechanism similar to that of one protection
domain granting a read-write capability to another. It is an explicit and specific part
of a class declaration. Consequently, | have never been able to see the recurring
assertions that a friend declaration "violates encapsulation” as anything but a
combination of ignorance and confusion with non-C++ terminology.

Even in the first version of C with Classes, the protection model applied to base
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classes as well as members. Thus, aclass could be either publicly or privately derived
from another. The private/public distinction for base classes predates the debate on
implementation inheritance vs. interface inheritance by about five years [Sny-
der, 1986] [Liskov,1987]. If you want to inherit an implementation only, you use pri-
vate derivation in C++. Public derivation gives users of the derived class access to the
interface provided by the base class. Private derivation leaves the base as an imple-
mentation detail; even the public members of the private base class are inaccessible
except through the interface explicitly provided for the derived class.

To provide "semi-transparent scopes’ a mechanism was provided to allow indi-
vidual public names from a private base class to be made public [Stroustrup,1982b]:

cl ass vector {

[* oo00*]
public:
[* o0 ]

voi d print(void);
¥

class hashed : vector /* vector is private base of hashed */

{

[* .0 %
public:
vector.print; /* sem-transparent scope */
/* other vector functions cannot */
/* be applied to hashed objects */
[* o0 %]

b

The syntax for making an otherwise inaccessible name accessible is smply naming it.
This is an example of a perfectly logical, minimalistic, and unambiguous syntax. It is
also unnecessarily obscure; amost any other syntax would have been an improve-
ment. This syntax problem has now been solved by the introduction of using-
declarations (see §17.5.2).
In the [ARM], the C++ notion of protection is summarized:
[1] Protection is provided by compile-time mechanisms against accident, not
againgt fraud or explicit violation.
[2] Accessis granted by aclass, not unilaterally taken.
[3] Access control is done for names and does not depend on the type of what is
named.
[4] The unit of protection is the class, not the individual object.
[5] Accessis controlled, not visibility.
All of this was true in 1980, though some of the terminology was different then. The
last point can be explained like this:
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int a; /I global a
class X {
private:
int a; /!l nmenber X :a
¥
class XX : public X {
void f() {a=I1; } [/ which a?
¥

Had visibility been controlled, X: : a would have been invisible, and XX: : f ()
would have referred to the global a. In fact, C with Classes and C++ deem the global
a hidden by the inaccessible X: : a and thus XX: : f () gets a compile-time error for
trying to access an inaccessible variable X: :a Why did | define it that way, and was
it the right choice? My recollection on this point is vague, and the stored records are
of no use. One point | do remember from the discussion at the time is that given the
example above, the rule adopted ensures that f () 's reference to a refers to the same
a independently of what access is declared for X: : a Making public/private
control visibility, rather than access, would have a change from public to private qui-
etly change the meaning of the program from one legal interpretation (access X: : @)
to another (access the global a). | no longer consider this argument conclusive (if |
ever did), but the decision made has proven useful in that it allows programmers to
add and remove public and private specifications during debugging without
quietly changing the meaning of programs. | do wonder if this aspect of the C++ defi-
nition is the result of a genuine design decision. It could smply be a default outcome
of the preprocessor technology used to implement C with Classes that didn't get
reviewed when C++ was implemented with more appropriate compiler technology
(83.9).

Another aspect of C++'s protection mechanism that shows operating system influ-
ence is the attitude towards circumvention of the rules. | assume that any competent
programmer can circumvent any rule that is not enforced by hardware so it is not
worth even trying to protect against fraud [ARM]:

"The C++ access control mechanisms provide protection against accident - not

against fraud. Any programming language that supports access to raw memory

will leave data open to deliberate tampering in ways that violate the explicit type
rules specified for a given data item."
The task of the protection system is to make sure that any such violation of the type
system is explicit and to minimize the need for such violations.

The operating system notion of read/write protection grew into C++'s notion of
const (83.8).

Over the years, there have been many proposals for providing access to a unit
smaller than awhole class. For example:

grant X::f(int) access to Y::a, Y::b, and Y::g(char);
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| have resisted such suggestions on the grounds that such finer-grain control gives no
added protection: Any member function can modify any data member of a class, so a
function granted access to a function member can indirectly modify every member. |
considered, as | till do, the complications in specification, implementation, and use to
outweigh the benefits of more explicit control.

2.11 Run-Time Guarantees

The access-control mechanisms described above simply prevent unauthorized access.
A second kind of guarantee was provided by "special member functions," such as
constructors, that were recognized and implicitly invoked by the compiler. The idea
was to alow the programmer to establish guarantees, sometimes caled invariants,
that other member functions could rely on (see aso §16.10).

2.11.1 Constructors and Destructors

One way | often explained the concept at the time was that a "new function" (a con-
structor) created the environment in which the member functions would operate and
the "delete function” (a destructor) would destroy that environment and release all
resources acquired for it. For example:

class monitor : object {

[* .0 %]

public:
new ) { I* create the nonitor's lock */ }
delete() { /* release and delete lock */ }
[* o0 %

b

See a so 83.9 and §13. 2. 4.

Where did the notion of constructors come from? | suspect | just invented it. |
was acquainted with Simula's class object initialization mechanism. However, | saw
aclass declaration as primarily the definition of an interface so | wanted to avoid hav-
ing to put code in there. Because C with Classes followed C in having three storage
classes, some form of initialization functions almost had to be recognized by the com-
piler (82.11.2). The observation that severa constructors would be useful was soon
made, and this became one of the major sources of the C++ overloading mechanisms
(83.6).

2.11.2 Allocation and Constructors

Likein C, objects can be alocated in three ways: on the stack (automatic storage), at a
fixed address (static storage), and on the free store (on the heap, dynamic storage). In
each case, the constructor must be called for the created object. Allocating an object
on the free store in C involves only a call of an allocation function. For example:
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nmonitor* p = (nonitor*)nmalloc(sizeof (nonitor));

This was clearly insufficient for C with Classes because there was no way of guaran-
teeing that a constructor was called. Consequently, | introduced an operator to ensure
that both alocation and initialization was done;

nmonitor* p = new nonitor;

The operator was called new because that was the name of the corresponding Simula
operator. The new operator invokes some allocation function to obtain memory and
then invokes a constructor to initialize that memory. The combined operation is often
caled instantiation or simply object creation; it creates an object out of raw memory.

The notational convenience offered by operator new is significant (83.9). How-
ever, combining allocation and initialization in a single operation without an explicit
error-reporting mechanism led to some practical problems. Handling and reporting
errors in constructors was rarely critical, though, and the introduction of exceptions
(816.5) provided a general solution.

To minimize recompilation, Cfront implemented a use of operator new for a class
with a constructor as simply a call of the constructor. The constructor then did both
the allocation and the initialization. This implied that if a trandation unit allocates all
objects of class X using new and calls no inline functions from X then that translation
unit need not be recompiled if the size and representation of X changes. Trandation
unit is the ANSI C term for a source file after preprocessing; that is, for the informa-
tion given to a compiler at one time for separate compilation. | found it very useful to
organize my simulation programs to minimize recompilation. However, the impor-
tance of such minimizing wasn't generally appreciated in the C with Classes and C++
community until much later (813.2).

An operator del ete was introduced to complement new in the same way as the
deallocation function free () complements malloc () (83.9, 810.7).

2.11.3 Call and Return Functions

Curiously enough, the initial implementation of C with Classes contained a feature
that is not provided by C++, but is often requested. One could define a function that
would implicitly be called before every call of every member function (except the
constructor) and another that would be implicitly called before every return from
every member function (except the destructor). They were called cal |l and return
functions. They were used to provide synchronization for the monitor class in the
original task library [Stroustrup, 1980b]:

class nonitor : object {
[* .0 %]
call () { I* grab lock */ }
return() { /* release lock */ }
[* .0 %]

b
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These are similar in intent to the CLOS :before and : after methods. Call and
return functions were removed from the language because nobody (but me) used them
and because | seemed to have completely failed to convince people that cal | () and
return() had important uses. In 1987 Mike Tiemann suggested an alternative
solution called "wrappers" [Tiemann,1987], but at the USENIX implemented'
workshop in Estes Park this idea was determined to have too many problems to be
accepted into C++.

2.12 Minor Features

Two very minor features, overloading of assignment and default arguments were
introduced into C with Classes. They were the precursors of C++'s overloading
mechanisms (83.6).

2.12.1 Overloading of Assignment

It was soon noticed that classes with a nontrivial representation such as string and
vector couldn't be copied successfully because C's semantics of assignment (bit-
wise copy) wasn't right for such types. This default copy semantics led to shared rep-
resentations rather than true copies. My response was to allow the programmer to
specify the meaning of assignment [Stroustrup,1980]:
"Unfortunately, this standard struct-like assignment is not always ideal. Typi-
caly aclass object is only the root of a tree of information and a simple copy of
that root without any notice taken of the branches is undesirable. Similarly, sm-
ply overwriting a class object can create chaos.
Changing the meaning of assignment for objects of a class provides a way of
handling these problems. This is done by declaring a class member function
cdled operators For example:

class x {
public:
int a ;
class y * p;
voi d operator = (class x * ) ;

¥
voi d x.operator = (class x * from
{
a = from>a;
del ete p;
p = from>p;
from>p = 0;
}

This defines a destructive read for objects of class x, as opposed to the copy oper-
ation implied by the standard semantics.”
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The [Stroustrup,1982] version uses an example that checks for this==f rom to han-
dle self-assignment correctly. Apparently, | learned that technique the hard way.

Where defined, an assignment operator was used to implement all explicit and
implicit copy operations. Initialization was handled by first initiadlizing to a default
value using a new-function (constructor) taking no arguments and then assigning.
This was found to be inefficient and led to the introduction of copy constructors in
C++(811.4.1).

2.12.2 Default Arguments

The heavy use of default constructors implied by the user-defined assignment opera-

tors naturally led to the introduction of default arguments [Stroustrup,1980]:
"The default argument list was a very late addition to the class mechanism. It was
added to curb the proliferation of identical "standard argument lists" for class
objects passed as function arguments, for class objects that were members of other
classes, and for base class arguments. Providing argument lists in these cases
proved enough of a nuisance to overcome the aversion to include yet another
"feature," and they can be used to make cl ass object declarations less verbose
and more similar to struct declarations.”

Hereis an example:
"It is possible to declare a default argument list for anew () function. Thislistis
then used whenever an object of the class is declared without an argument. For
example, the declaration:

cl ass char_stack

{
voi d new(i nt=512);

}
makes the declaration
cl ass char_stack, s3;

legal, and initializes s3 by the call s3 . new (512)."
Given general function overloading (83.6, §11), default arguments are logically
redundant and at best a minor notational convenience. However, C with Classes had
default argument lists for years before general overloading became available in C++.

2.13 Features Considered, but not Provided

In the early days many features were considered that later appeared in C++ or are till
discussed. These included virtua functions, stati c members, templates, and multi-
pleinheritance. However,
"All of these generalizations have their uses, but every "feature" of a language
takes time and effort to design, implement, document, and learn.... The base class
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concept is an engineering compromise, like the C class concept

[Stroustrup,1982b]."

I just wish | had explicitly mentioned the need for experience. With that, the case
against featurism and for a pragmatic approach would have been complete.

The possibility of automatic garbage collection was considered on severa occa
sions before 1985 and deemed unsuitable for a language aready in use for real-time
processing and hard-core systems tasks such as device drivers. In those days, garbage
collectors were less sophisticated than they are today, and the processing power and
memory capacity of the average computer were small fractions of what today's sys-
tems offer. My persona experience with Simula and reports on other garbage-
collection-based systems convinced me that garbage collection was unaffordable by
me and my colleagues for the kind of applications we were writing. Had C with
Classes (or even C++) been defined to require automatic garbage collection, it would
have been more elegant, but stillborn.

Direct support for concurrency was aso considered, but | rejected that in favor of
a library-based approach (82.1).

2.14 Work Environment

C with Classes was designed and implemented by me as a research project in the
Computing Science Research Center of Bell Labs. This center provided - and till
provides - a possibly unique environment for such work. When | joined, | was basi-
caly told to "do something interesting,” given suitable computer resources, encour-
aged to talk to interesting and competent people, and given a year before having to
formally present my work for evaluation.

There was a cultural bias against "grand projects” that required more than a cou-
ple of people, against "grand plans” like untested paper designs for others to imple-
ment, and against a class distinction between designers and implementers. If you
liked such things, Bell Labs and others have many places where you could indulge
such preferences. However, in the Computing Science Research Center it was almost
a requirement that you - if you were not into theory - personally implemented some-
thing embodying your ideas and found users that could benefit from what you built.
The environment was very supportive for such work and the Labs provided a large
pool of people with ideas and problems to challenge and test anything built. Thus, |
could write in [Stroustrup,1986]:

"There never was a C++ paper design; design, documentation, and implementa-

tion went on simultaneously. Naturally, the C++ front-end is written in C++.

There never was a "C++ project" either, or a "C++ design committee".

Throughout, C++ evolved, and continues to evolve, to cope with problems

encountered by users, and through discussions between the author and his friends

and colleagues.”
Only after C++ was an established language did more conventional organizational
structures emerge and even then | was officialy in charge of the reference manual and
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had the final say over what went into it until that task was handed over to the ANSI
C++ committee in early 1990. As the standards committee's chairman of the working
group for extensions, I'm gtill directly responsible for every feature that enters C++
(86.4). On the other hand, &fter the first few months | never had the freedom to design
just for the sake of designing something beautiful or to make arbitrary changes in the
language as it stood at any given time. Every language feature required an implemen-
tation to make it real, and any change or extension required the concurrence and usu-
aly enthusiasm of key C with Classes and later C++ users.

Since there was no guaranteed user population, the language and its implementa-
tions could only survive by serving the needs of its users well enough to counteract
the organizational pull of established languages and the marketing hype of newer lan-
guages. In particular, introducing even a minor incompatibility required delivering
some much larger benefit to the users, so magor incompatibilities were not often intro-
duced even in the early days. Since to a user amost any incompatibility can seem
major, incompatibilities were as rare as | could manage. Only in the move from C
with Classes to C++ were many programs deliberately broken.

The absence of a forma organizational structure, of larger-scale support in terms
of money, people, "captive" users, and marketing was more than compensated for by
the informal help and insights of my peers in the Computing Science Research Center
and the protection from nontechnical demands from development organizations
offered by the center management. Had it not been for the insights of members of the
center and the insulation from political nonsense, the design of C++ would have been
compromised by fashions and special interests and its implementation bogged down
in a bureaucratic quagmire. It was also most important that Bell Labs provided an
environment where there was no need to hoard ideas for personal advancement.
Instead, discussion could, did, and still does flow fregly, allowing people to benefit
from the ideas and opinions of others. Unfortunately, the Computing Science
Research Center is not typical even within Bell Labs.

C with Classes grew through discussions with people in the Computing Science
Research Center and early users there and elsewhere in the Labs. Most of C with
Classes and later C++ was designed on somebody else's blackboard and the rest on
mine. Most such ideas were rejected as being too elaborate, too limited in usefulness,
too hard to implement, too hard to teach for use in real projects, not efficient enough
in time or space, too incompatible with C, or simply too weird. The few ideas that
made it through this filter - invariably involving discussions with at least two people
- | then implemented. Typically, the idea mutated through the effort of implementa-
tion, testing, and early use by me and afew others. The resulting version wastried on
a larger audience and would often mutate a bit further before finding its way into the
"official" version of C with Classes as shipped by me. Usually, a tutorial was writ-
ten somewhere along the way. Writing a tutorial was considered an essential design
tool, because if a feature cannot be explained simply, the burden of supporting it will
be too great. This point was never far from my mind because during the early years |
was the support organization.

In the early days Sandy Fraser, my department head at the time, was very
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influential. For example, | believe he was the one to encourage me to break from the
Simula style of class definition where the complete function definition is included and
adopt the style where function definitions are typically elsewhere thus emphasizing
the class declaration's role as an interface. Much of C with Classes was designed to
allow simulators to be built that could be used in Sandy Fraser's work in network
design. The first real application of C with Classes was such network simulators.
Sudhir Agrawal was another early user who influenced the development of C with
Classes through his work with network simulations. Jonathan Shopiro provided much
feedback on the C with Classes design and implementation based on his simulation of
a "dataflow database machine.”

For more general discussions on programming language issues, as opposed to
looking at applications to determine which problems needed to be solved, | turned to
Dennis Ritchie, Steve Johnson, and in particular Doug Mcllroy. Doug's influence on
the development of both C and C++ cannot be overestimated. | cannot remember a
single critical design decision in C++ that | have not discussed at length with Doug.
Naturally, we didn't always agree, but | still have a strong reluctance to make a deci-
sion that goes against Doug's opinion. He has a knack for being right and an appar-
ently infinite amount of experience and patience.

Since the main design work for C with Classes and C++ was done on blackboards,
the thinking tended to focus on solutions to "archetypical” problems: small examples
that are considered characteristic for a large class of problems. Thus, a good solution
to the small example will provide significant help in writing programs dealing with
real problems of that class. Many of these problems have entered the C++ literature
and folklore through my use of them as examples in my papers, books, and talks. For
C with Classes, the example considered most critical was the task class that was the
basis of the task-library supporting Simula-style simulation. Other key classes were
gueue, list, and histogram classes. The queue and |i st classes were based
on the idea - borrowed from Simula - of providing a 1ink class from which users
derived their own classes.

The danger inherent in this approach is to create alanguage and tools that provide
elegant solutions to small selected examples, yet don't scale to building complete sys-
tems or large programs. This was counteracted by the ssimple fact that C with Classes
(and later C++) had to pay for itself during its early years. This ensured that C with
Classes couldn't evolve into something that was elegant but useless.

Being an individual working closely with users also gave me the freedom to prom-
ise only what | could actually deliver, rather than having to inflate my promises to the
point where it would appear to make economic sense for an organization to alocate
significant resources to the development, support, and marketing of "a product.”
Like al languages that have worked for a living during childhood, C++ matured with
adistinct practical and pragmatic bent and a number of scars. The simulations of net-
works, board layouts, chips, network protocols, etc., based on the task library were
my bread and butter in those early years.



3

The Birth of C++

No ties bind so strongly
as the links of inheritance.
- Sephen Jay Gould

From C with Classes to C++ — Cfront, the initial implementation of C++
— virtual functions and object-oriented programming — operator over-
loading and references — constants — memory management — type
checking — C++'s relationship to C — dynamic initialization — declara-
tion syntax — description and evaluation of C++.

3.1 From C with Classesto G+

During 1982 it became clear to me that C with Classes was a "medium success' and
would remain so until it died. | defined a medium success as something so useful that
it easily paid for itself and its developer, but not so attractive and useful that it would
pay for a support and development organization. Thus, continuing with C with
Classes and its C preprocessor implementation would condemn me to support C with
Classes indefinitely. | saw only two ways out of this dilemma:

[1] Stop supporting C with Classes so that the users would have to go elsewhere
(freeing me to do something else).

[2] Develop a new and better language based on my experience with C with
Classes that would serve a large enough set of users to pay for a support and
development organization (thus freeing me to do something else). At the time
| estimated that 5,000 industrial users was the necessary minimum.

The third alternative, increasing the user population through marketing (hype), never
occurred to me. What actually happened was that the explosive growth of C++, as the
new language was eventualy named, kept me so busy that to this day | haven't
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managed to get sufficiently detached to do something else of significance.

The success of C with Classes was, | think, a simple consequence of meeting its
design aim: C with Classes did help organize a large class of programs significantly
better than C without the loss of run-time efficiency and without requiring enough
cultural changes to make its use infeasible in organizations that were unwilling to
undergo major changes. The factors limiting its success were partly the limited set of
new facilities offered over C and partly the preprocessor technology used to imple-
ment C with Classes. There simply wasn't enough support in C with Classes for peo-
ple who were willing to invest significant efforts to reap matching benefits: C with
Classes was an important step in the right direction, but it was only one small step.
As aresult of this analysis, | began designing a cleaned-up and extended successor to
C with Classes and implementing it using traditional compiler technology.

The resulting language was at first ill called C with Classes, but after a polite
request from management it was given the name C84. The reason for the naming was
that people had taken to calling C with Classes "new C," and then C. This abbrevia-
tion led to C being called "plain C," "straight C," and "old C." The last name, in
particular, was considered insulting, so common courtesy and a desire to avoid confu-
sion led me to look for a new name.

The name C84 was used only for a few months, partly because it was ugly and
institutional, partly because there would till be confusion if people dropped the
"84." Also, Larry Rosier, the editor of the X3J11 ANSI committee for the standard-
ization of C, asked me to find another name. He explained, "standardized languages
are often referred to by their name followed by the year of the standard and it would
be embarrassing and confusing to have a superset (C84, ak.a. C with Classes, and
later C++) with alower number than its subset (C, possibly C85, and later ANSI C)."
That seemed eminently reasonable - although Larry turned out to have been some-
what optimistic about the date of the C standard - and | started asking for ideas for a
new name among the C with Classes user community.

| picked C++ because it was short, had nice interpretations, and wasn't of the form
"adjective C." In C, ++ can, depending on context, be read as "next," "successor,"
or "increment," though it is aways pronounced "plus plus." The name C++ and its
runner up ++C are fertile sources for jokes and puns - amost al of which were
known and appreciated before the name was chosen. The name C++ was suggested
by Rick Mascitti. It was first used in December of 1983 when it was edited into the
find copies of [Stroustrup,1984] and [Stroustrup,1984c].

The " C" in C++ has along history. Naturally, it is the name of the language Den-
nis Ritchie designed. C's immediate ancestor was an interpreted descendant of BCPL
class B designed by Ken Thompson. BCPL was designed and implemented by Mar-
tin Richards from Cambridge University while visiting MIT in the other Cambridge.
BCPL in turn was Basic CPL, where CPL is the name of a rather large (for its time)
and elegant programming language developed jointly by the universities of Cam-
bridge and London. Before the London people joined the project "C" stood for
Cambridge. Later, "C" officidly stood for Combined. Unofficidly, " C" stood for
Christopher because Christopher Stratchey was the main power behind CPL.
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32 Aims

During the 1982 to 1984 period, the aims for C++ gradually became more ambitious
and more definite. | had come to see C++ as alanguage separate from C, and libraries
and tools had emerged as areas of work. Because of that, because tool developers
within Bell Labs were beginning to show interest in C++, and because | had embarked
on a completely new implementation that would become the C++ compiler front-end,
Cfront, | had to answer several key questions:

[1] Who will the users be?

[2] What kind of systems will they use?

[3] How will I get out of the business of providing tools?

[4] How should the answers to [1], [2], and [3] affect the language definition?

My answer to [1], "Who will the users be?," was that first my friends within Bell
Labs and | would use it, then more widespread use within AT& T would provide more
experience, then some universities would pick up the ideas and the tools, and finaly
AT&T and others would be able to make some money by selling the set of tools that
had evolved. At some point, the initial and somewhat experimental implementation
done by me would be faded out in favor of more industrial-strength implementations
by AT&T and others.

This made practical and economic sense; the initial (Cfront) implementation
would be tool-poor, portable, and cheap because that was what |, my colleagues, and
many university users needed and could afford. Later, there would be ample scope
for better tools and more speciaized environments. Such better tools aimed primarily
at industrial users needn't be cheap either, and would thus be able to pay for the sup-
port organizations necessary for large-scale use of the language. That was my answer
to [3], "How will | get out of the business of providing tools?' Basically, the strat-
egy worked. However, just about every detail actually happened in an unforeseen
way.

To get an answer to [2], "What kind of systems will they use?" | simply looked
around to see what kind of systems the C with Classes users actually did use. They
used everything from systems that were so small they couldn't run a compiler to
mainframes and supercomputers. They used more operating systems than | had heard
of. Consequently, | concluded that extreme portability and the ability to do cross
compilation were necessities and that 1 could make no assumption about the size and
speed of the machines running generated code. To build a compiler, however, |
would have to make assumptions about the kind of system people would develop their
programs on. | assumed that one MIPS plus one Mbyte would be available. That
assumption, | considered a bit risky because most of my prospective users at the time
had a shared PDP11 or some other relatively low-powered and/or timeshared system.

| did not predict the PC revolution, but by over-shooting my performance target
for Cfront | happened to build a compiler that (barely) could run on an IBM PC/AT,
thus providing an existence proof that C++ could be an effective language on a PC
and thereby spurring commercia software developers to beat it.

As the answer to [4], "How does dl this affect the language definition?" |
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concluded that no feature must require really sophisticated compiler or run-time sup-
port, that available linkers must be used, and that the code generated would have to be
efficient (comparable to C) even initialy.

3.3 Cfront

The Cfront compiler front-end for the C84 language was designed and implemented
by me between the spring of 1982 and the summer of 1983. The first user outside the
computer science research center, Jim Coplien, received his copy in July of 1983. Jm
was in agroup that had been doing experimental switching work using C with Classes
in Bell Labs in Naperville, 1llinois for some time.

In that same time period, | designed C84, drafted the reference manual published
January 1, 1984 [Stroustrup,1984], designed the complex number library and imple-
mented it together with Leonie Rose [Rose, 1984], designed and implemented the first
string class together with Jonathan Shopiro, maintained and ported the C with
Classes implementation, supported the C with Classes users, and helped them become
C84 users. That was abusy year and a hdf.

Cfront was (and is) a traditiona compiler front-end that performs a complete
check of the syntax and semantics of the language, builds an internal representation of
its input, analyzes and rearranges that representation, and finally produces output suit-
able for some code generator. The internal representation is a graph with one symbol
table per scope. The general strategy is to read a source file one global declaration at
a time and produce output only when a complete global declaration has been com-
pletely analyzed.

In practice, this means that the compiler needs enough memory to hold the repre-
sentation of all global names and types plus the complete graph of one function. A
few years later, | measured Cfront and found that its memory usage leveled out at
about 600 Kbytes on a DEC VAX just about independently of which real program |
fed it. This fact was what made my initial port of Cfront to a PC/AT in 1986 feasible.
At the time of Release 10 in 1985 Cfront was about 12,000 lines of C++.

The organization of Cfront is fairly traditional except maybe for the use of many
symbol tables instead of just one. Cfront was originaly written in C with Classes
(what else?) and soon transcribed into C84 so that the very first working C++ com-
piler was done in C++. Even the first version of Cfront used classes and derived
classes heavily. It did not use virtual functions, though, because they were not avail-
able at the start of the project.

Cfront is a compiler front-end (only) and can never be used for real programming
by itsdlf. It needs a driver to run a source file through the C preprocessor, Cpp, then
run the output of Cpp through Cfront and the output from Cfront through a C com-
piler:



Section 3.3 Cfront 67

| source text = cpp

cfront |

W\
}‘._. y@
N

e _

In addition, the driver must ensure that dynamic (run-time) initialization is done. In
Cfront 3.0, the driver becomes yet more elaborate as automatic template instantiation
(815.2) is implemented [McClusky,1992].

3.3.1 Generating C

The most unusual - for its time - aspect of Cfront was that it generated C code. This
has caused no end of confusion. Cfront generated C because | needed extreme porta-
bility for an initial implementation and | considered C the most portable assembler
around. | could easily have generated some internal back-end format or assembler
from Cfront, but that was not what my users needed. No assembler or compiler
back-end served more than maybe a quarter of my user community and there was no
way that | could produce the, say, six backends needed to servejust 90% of that com-
munity. In response to this need, | concluded that using C as a common input format
to alarge number of code generators was the only reasonable choice. The strategy of
building a compiler as a C generator later became popular. Languages such as Ada,
Eiffd, Modula-3, Lisp, and Smalltalk have been implemented that way. | got a high
degree of portability at a modest cost in compile-time overhead. The sources of over-
head were

[1] The time needed for Cfront to write the intermediate C.

[2] The time needed for a C compiler to read the intermediate C.

[3] Thetime "wasted" by the C compiler analyzing the intermediate C.

[4] The time needed to control this process.
The size of this overhead depends critically on the time needed to read and write the
intermediate C representation and that primarily depends on the disc read/write strat-
egy of a system. Over the years | have measured this overhead on various systems
and found it to be between 25% and 100% of the "necessary" parts of a compilation.
| have also seen C++ compilers that didn't use intermediate C yet were dower than
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Cfront plus a C compiler.

Please note that the C compiler is used as a code generator only. Any error mes-
sage from the C compiler reflects an error in the C compiler or in Cfront, but not in
the C++ source text. Every syntactic and semantic error is in principle caught by
Cfront, the C++ compiler front-end. In this, C++ and its Cfront implementation dif-
fered from preprocessor-based languages such as Ratfor [Kernighan,1976] and Objec-
tive C [Cox, 1986].

| stress this because there has been a long history of confusion about what Cfront
is. It has been called a preprocessor because it generates C, and for people in the C
community (and elsewhere) that has been taken as proof that Cfront was a rather sim-
ple program - something like a macro preprocessor. People have thus "deduced”
(wrongly) that a line-for-line trandation from C++ to C is possible, that symbolic
debugging at the C++ level is impossible when Cfront is used, that code generated by
Cfront must be inferior to code generated by "real compilers,” that C++ wasn't a
"real language," etc. Naturaly, | have found such unfounded claims most annoying
- especially when they were leveled as criticisms of the C++ language. Several C++
compilers now use Cfront together with local code generators without going through a
C front end. To the user, the only obvious difference is faster compile times.

The irony is that | dislike most forms of preprocessors and macros. One of C++'s
aims is to make C's preprocessor redundant (84.4, §18) because | consider its actions
inherently error prone. Cfront's primary am was to alow C++ to have rational
semantics that could not be implemented with the kind of compilers that were used
for C at the time: Such compilers simply don't know enough about types and scopes
to do the kind of resolution C++ requires. C++ was designed to rely heavily on tradi-
tional compiler technology, rather than on run-time support or detailed programmer
resolution of expressions (as you need in languages without overloading). Conse-
quently, C++ cannot be compiled with any traditional preprocessor technology. | con-
sidered and rejected such aternatives for language semantics and translator technol-
ogy at the time. Cfront's immediate predecessor, Cpre, was a fairly traditional pre-
processor that didn't understand every syntax, scope, and type rule of C. This had
been a source of many problems both in the language definition and in actual use. |
was determined not to see these problems repeated for my revised language and new
implementation. C++ and Cfront were designed together and language definition and
compiler technology definitely affected each other, but not in the simple-minded man-
ner people sometimes assume.

3.3.2 Parsing C++

In 1982 when | first planned Cfront, | wanted to use a recursive descent parser
because | had experience writing and maintaining such a beast, because | liked such
parsers' ability to produce good error messages, and because | liked the idea of having
the full power of a general-purpose programming language available when decisions
had to be made in the parser. However, being a conscientious young computer scien-
tist | asked the experts. Al Aho and Steve Johnson were in the Computer Science
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Research Center and they, primarily Steve, convinced me that writing a parser by
hand was most old-fashioned, would be an inefficient use of my time, would almost
certainly result in a hard-to-understand and hard-to-maintain parser, and would be
prone to unsystematic and therefore unreliable error recovery. The right way was to
use an LALR(I) parser generator, so | used Al and Steve's YACC [Aho,1986].

For most projects, it would have been the right choice. For amost every project
writing an experimental language from scratch, it would have been the right choice.
For most people, it would have been the right choice. In retrospect, for me and C++ it
was abad mistake. C++ was not a new experimental language, it was an amost com-
patible superset of C - and at the time nobody had been able to write an LALR(I)
grammar for C. The LALR(l) grammar used by ANSI C was constructed by Tom
Pennello about ayear and a half later - far too late to benefit me and C++. Even Steve
Johnson's PCC, which was the preeminent C compiler at the time, cheated at details
that were to prove troublesome to C++ parser writers. For example, PCC didn't han-
dle redundant parentheses correctly so that int (x) ; wasn't accepted as a declara-
tion of x. Worse, it seems that some people have a natural affinity to some parser
strategies and others work much better with other strategies. My bias towards top-
down parsing has shown itself many times over the years in the form of constructs
that are hard to fit into a YACC grammar. To this day, Cfront has a YACC parser
supplemented by much lexical trickery relying on recursive descent techniques. On
the other hand, it is possible to write an efficient and reasonably nice recursive
descent parser for C++. Several modern C++ compilers use recursive descent.

3.3.3 Linkage Problems

As mentioned, | decided to live within the constraints of traditional linkers. However,
there was one constraint | found insufferable, yet so silly that | had a chance of fight-
ing it if 1 had sufficient patience: Most traditional linkers had a very low limit on the
number of characters that can be used in external names. A limit of eight characters
was common, and six characters and one case only are guaranteed to work as external
names in K&R C; ANSI/ISO C aso accepts that limit. Given that the name of a
member function includes the name of its class and that the type of an overloaded
function has to be reflected in the linkage process somehow or other (see §11.3.1), |
had little choice.

Consider:
void task::schedule() {/*...*/}/ /| 4+8 characters
voi d hashed::print() { /* ... */ } /] 6 + 5 characters

conpl ex sqrt(conmplex); // 4 character plus 'conplex’
doubl e sqgrt(double); /1 4 character plus 'double’

Representing these names with only six upper case characters would require some
form of compression that would complicate tool building. It would probably aso
involve some form of hashing so that a rudimentary "program database” would be
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needed to resolve hash overflows. The former is a nuisance, and the latter could be a
serious problem because there is no concept of a ''program database" in the tradi-
tional C/Fortran linkage model.

Conseguently, | started (in 1982) lobbying for longer names in linkers. | don't
know if my efforts actually had any effect, but these days most linkers do give me the
much larger number of characters | need. Cfront uses encodings to implement type-
safe linkage in a way that makes a limit of 32 characters too low for comfort, and
even 256 is abit tight at times (see 811.3.2). In the interim, systems of hash coding of
long identifiers have been used with archaic linkers, but that was never completely
satisfactory.

3.3.4 Cfront Releases

The first C with Classes and C++ implementations to make their way out of Bell Labs
were early versions that people in various university departments had requested
directly from me. In that way, people in dozens of educational institutions got to use
C with Classes. Examples are Stanford University (December 1981, first Cpre ship-
ment), University of California at Berkeley, University of Wisconsin in Madison, Cal-
tech, University of North Carolina a Chapel Hill, MIT, University of Sydney,
Carnegie-Mellon University, University of Illinois at Urbana-Champaign, University
of Copenhagen, Rutherford Labs (Oxford), IRCAM, INRIA. The shipments of imple-
mentations to individual educational institutions continued after the design and imple-
mentation of C++. Examples are University of California a Berkeley (August 1984,
firsg Cfront shipment), Washington University (St. Louis), University of Texas in
Austin, University of Copenhagen, and University of New South Wales. In addition,
students showed their usua creativity in avoiding paperwork. Even then, handling
individual releases soon became a burden for me and a source of annoyance for uni-
versity people wanting C++. Consequently, my department head, Brian Kernighan,
AT&T's C++ product manager, Dave Kalman, and | came up with the idea of having
amore genera release of Cfront. The ideawas to avoid commercia problems such as
determining prices, writing contracts, handling support, advertising, getting documen-
tation to conform to corporate standards, etc., by basically giving Cfront and afew
libraries to university people at the cost of the tapes used for shipping. This was
caled Release E, "E" for "Educational." The first tapes were shipped in January
1985 to organizations such as Rutherford Labs (Oxford).

Release E was an eye opener for me. In fact, Release E was aflop. | had expected
interest in C++ in universities to surge. Instead, the growth of C++ users continued
along its usua curve (87.1) and what we saw instead of a flood of new users was a
flood of complaints from professors because C++ wasn't commercially available.
Again and again | was contacted and told '"Yes, | want to use C++, and | know that |
can get Cfront for free, but unfortunately | can't use it because | need something | can
use in my consulting and something my students can use in industry." So much for
the pure academic pursuit of learning. Steve Johnson, then the department head in
charge of C and C++ development, Dave Kalman, and | went back to the drawing
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board and came back with the plan for a commercial Release 1.0. However, the pol-
icy of "'almost free" C++ implementations (with source and libraries) to educational
institutions that originated with Release E remains in place to this day.

Versions of C++ are often named by Cfront release numbers. Release 10 was the
language as defined in The C+ + Programming Language [Stroustrup,1986]. Releases
11 (June 1986) and 12 (February 1987) were primarily bug-fix releases, but aso
added pointers to members and protected members (813.9).

Release 2.0 was a mgjor cleanup that aso introduced multiple inheritance (812.1)
in June 1989. It was widely perceived as a significant improvement both in function-
ality and quality. Release 2.1 (April 1990) was primarily a bug-fix release that
brought Cfront (almost) into line with the definition in The Annotated C++ Reference
Manual [ARM] (85.3).

Release 3.0 (September 1991) added templates (815) as specified in the ARM. A
variant of 3.0 supporting exception handling (816) as specified in the ARM was pro-
duced by Hewlett-Packard [Cameron, 1992] and shipped starting late 1992.

| wrote the first versions of Cfront (1.0, 1.1, 12) and maintained them; Steve
Dewhurst worked on it with me for a few months before Release 10 in 1985. Laura
Eaves did much of the work on the Cfront parser for Release 10, 1.1, 2.1, and 3.0. |
also did the lion's share of the programming for Release 12 and 2.0, but starting with
Release 1.2, Stan Lippman aso spent most of his time on Cfront. Laura Eaves, Stan
Lippman, George Logothetis, Judy Ward, and Nancy Wilkinson did most of the work
for Release 2.1 and 3.0. The work on 1.2, 2.0, 2.1, and 3.0 was managed by Barbara
Moo. Andrew Koenig organized Cfront testing for 2.0. Sam Haradhvala from Object
Design Inc. did an initial implementation of templates in 1989 that Stan Lippman
extended and completed for Release 3.0 in 1991. The initial implementation of
exception handling in Cfront was done by Hewlett-Packard in 1992. In addition to
these people who have produced code that has found its way into the main version of
Cfront, many people have built loca C++ compilers from it. Over the years a wide
variety of companies including Apple, Centerline (formerly Saber), Comeau Compuit-
ing, Glockenspiel, ParcPlace, Sun, Hewlett-Packard, and others have shipped products
that contain locally modified versions of Cfront.

34 Language Features

The major additions to C with Classes introduced to produce C++ were:

[1] Virtua functions (83.5)

[2] Function name and operator overloading (83.6)

[3] References (83.7)

[4] Constants (83.8)

[5] User-controlled free-store memory control (83.9)

[6] Improved type checking (83.10)
In addition, the notion of call and return functions (82.11) was dropped due to lack of
use and many minor details were changed to produce a cleaner language.
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35 Virtua Functions

The most obvious new feature in C++ - and certainly the one that had the greatest
impact on the style of programming one could use for the language - was virtual
functions. The idea was borrowed from Simula and presented in a form that was
intended to make a simple and efficient implementation easy. The rationale for vir-
tual functions was presented in [Stroustrup,1986] and [Stroustrup,1986b]. To empha-
size the central role of virtual functions in C++ programming, | will quote it in detail
here [Stroustrup,1986]:
"An abstract data type defines a sort of black box. Once it has been defined, it
does not redly interact with the rest of the program. There is no way of adapting
it to new uses except by modifying its definition. This can lead to severe inflexi-
bility. Consider defining atype shape for use in a graphics system. Assume for
the moment that the system has to support circles, triangles, and squares. Assume
also that you have some classes:

class point{ /* ... *| };
class color{ /* ... *| };

You might define a shape like this:
enumkind { circle, triangle, square };

cl ass shape {
poi nt center;

col or col;
ki nd k;
// representation of shape
public:
poi nt where() { return center; }
voi d move(point to) { center =to; draw(); }
void draw();

voidrotate(int);
/1 more operations

b

The "type field" k is necessary to alow operations such as draw() and
rotate() to determine what kind of shape they are dealing with (in a Pascal-
like language, one might use a variant record with tag k). The function draw ()
might be defined like this:

voi d shape::draw()
{
switch (k) {
case circle:
// draw a circle
br eak;
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case triangle:
/1 draw a triangle
br eak;

case square:
/1 draw a square
br eak;

}

This is amess. Functions such as draw() must "know about" al the kinds of
shapes there are. Therefore the code for any such function grows each time a new
shape is added to the system. If you define a new shape, every operation on a
shape must be examined and (possibly) modified. You are not able to add a new
shape to a system unless you have access to the source code for every operation.
Since adding a new shape involves ''touching" the code of every important opera-
tion on shapes, it requires great skill and potentially introduces bugs into the code
handling other (older) shapes. The choice of representation of particular shapes
can get severely cramped by the requirement that (at least some of) their represen-
tation must fit into the typically fixed sized framework presented by the definition
of the general type shape.

The problem is that there is no distinction between the general properties of
any shape (a shape has a color, it can be drawn, etc.) and the properties of a spe-
cific shape (acircle is a shape that has aradius, is drawn by a circle-drawing func-
tion, etc.). Expressing this distinction and taking advantage of it defines object-
oriented programming. A language with constructs that allows this distinction to
be expressed and used supports object-oriented programming. Other languages
don't.

The Simula inheritance mechanism provides a solution that | adopted for C++.
First, specify aclass that defines the general properties of all shapes:

class shape {
poi nt center;
col or col;
...
public:
poi nt where() { return center; }
voi d move(point to) { center = to; draw(); }
virtual void draw();
virtual void rotate(int);
...

}s

The functions for which the calling interface can be defined, but where the
implementation cannot be defined except for a specific shape, have been marked
virtual (the Smula and C++ term for "may be redefined later in a class
derived from this one"). Given this definition, we can write general functions
manipulating shapes:
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void rotate_all (shape** v, int size, int angle)
/1l rotate all nenbers of vector "v"
/1 of size "size" "angle" degrees

{

}
To define a particular shape, we must say that it is a shape and specify its par-
ticular properties (including the virtual functions).

for (int i =0; i <size; i++) v[i]->rotate(angle);

class circle : public shape {

int radius;
public:
void draw() { /* ... */ };
void rotate(int) {} /1 yes, the null function

b

In C++, class circleis said to be derived from class shape, and class shape

is said to be a base of class circle. An aternative terminology cals circle

and shape subclass and superclass, respectively."
For further discussion of virtual functions and object-oriented programming see
§13.2, 812.3.1, 813.7, §13.8, and 814.2.3.

| don't remember much interest in virtual functions at the time. | probably didn't
explain the concepts involved well, but the main reaction | received from people in
my immediate vicinity was one of indifference and skepticism. A common opinion
was that virtual functions were simply a kind of crippled pointer to function and thus
redundant. Worse, it was sometimes argued that a well-designed program wouldn't
need the extensibility and openness provided by virtual functions so that proper analy-
sis would show which non-virtual functions could be called directly. Therefore, the
argument went, virtual functions were simply a form of inefficiency. Clearly, | dis-
agreed and added virtual functions anyway.

| deliberately did not provide a mechanism for explicit inquiry about the type of an
object in C++:

"The Simula67 INSPECT statement was deliberately not introduced into C++.

The reason for that is to encourage modularity through the use of virtual functions

[Stroustrup,1986]."
The Simula INSPECT statement is a switch on a system-provided type field. | had
seen enough misuses to be determined to rely on static type checking and virtua func-
tions in C++ as long as possible. A mechanism for run-time type inquiry was eventu-
ally added to C++ (814.2). | hope its form will make it less seductive than the Simula
INSPECT was and is.

3.5.1 The Object Layout Mode

The key implementation idea was that the set of virtual functions in a class defines an
array of pointers to functions so that a call of a virtua function is smply an indirect
function call through that array. There is one such array, usualy caled a virtual
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function table or vtbl, per class with virtua functions. Each object of such a class
contains a hidden pointer, often caled the vptr, to its class's virtual function table.
G ven:

class A {
int a;

public:
virtual void f();
virtual void g(int);
virtual void h(double);

¥
class B : public A {
public:

int b;

void g(int); // overrides A :g()
virtual void m(B*);

b
class C: public B {
public:
intc;
voi d h(double); // overrides A :h()
virtual void n(C*);
b
aclass C obiect looked something like this:
a - vthl:
vptr &A::f
b &B::g
c &C::h
&B::m
&C::n

A cal to a virtua function is transformed by the compiler into an indirect call. For
example,

void f(C* p)
p->9(2);
becomes something like

(*(p->vptr[1]))(p,2); /* generated code */

This implementation is not the only one possible. Its virtues are simplicity and run-
time efficiency; its problem is that recompilation of user code is necessary if you



76  TheBirth of C++ Chapter 3

change the set of virtual functions for a class.

At this point, the object model becomes real in the sense that an object is more
than the simple aggregation of the data members of a class. An object of a C++ class
with a virtual function is a fundamentally different beast from a smple C struct.
Then why did | not at this point choose to make structs and classes different notions?

My intent was to have a single concept: a single set of layout rules, a single set of
lookup rules, a single set of resolution rules, etc. Maybe we could have lived with
two set of rules, but a single concept provides a smoother integration of features and
simpler implementations. | was convinced that if struct came to mean "C and
compatibility" to users and cl ass to mean "C++ and advanced features,” the com-
munity would fall into two distinct camps that would soon stop communicating.
Being able to use as many or as few language features as needed when designing a
class was an important ideato me. Only a single concept would support my ideas of a
smooth and gradual transition from "traditional C-style programming,” through data
abstraction, to object-oriented programming. Only a single concept would support the
notion of "you only pay for what you use" ideal.

In retrospect, | think these notions have been very important for C++'s success as
apractical tool. Over the years, just about everybody has had some kind of expensive
idea that could be implemented "for classes only," leaving low overhead and low
features to structs. | think the idea of keeping struct and cl ass the same con-
cept saved us from classes supporting an expensive, diverse, and rather different set of
features than we have now. In other words, the "a struct isaclass"” notionis
what has stopped C++ from drifting into becoming a much higher-level language with
a disconnected low-level subset. Some would have preferred that to happen.

3.5.2 Overriding and Virtual Function Matching

A virtual function could only be overridden by a function in a derived class with the
same name and exactly the same argument and return type. This avoided any form of
run-time type checking of arguments and any need to keep more extensive type infor-
mation around at run time. For example:

cl ass Base {

public:
virtual void f();
virtual void g(int);

¥
class Derived : public Base {
public:
void f(); /1 overrides Base::f()

void g(char); // doesn't override Base::g()
b

This opens an obvious trap for the unwary: The non-virtual Derived: : g () is actu-
ally unrelated to the virtual Base: : g () and hidesit. Thisis a problem if you work
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with a compiler that doesn't warn you about the problem. However, the problem is
trivial for a compiler to detect and is a non-problem given an implementation that
does warn. Cfront 10 didn't warn, thus causing some grief, but Cfront 2.0 and higher
do.

The rule requiring an exact type match for an overriding function was later relaxed
for the return type; see §13.7.

3.5.3 Base Member Hiding

A name in a derived class hides any object or function of the same name in a base
class. Whether this is a good design decision has been the subject of some debate
over the years. The rule was first introduced in C with Classes. | saw it as a simple
consequence of the usual scope rules. When arguing the point, | hold that the oppo-
site rule - names from derived and base classes are merged into a single scope - gives
at least as many problems. In particular, state-changing functions would occasionally
be called for sub-objects by mistake:

class X {
int x;
public:
virtual void copy(X* p) { x = p->x; }
b
class XX: public X {
int Xx;
public:
virtual void copy(XX* p) { xx = p->xx; X :Copy(p); }
b
void f(X a, XX b)
{
a.copy(&b); // ok: copy Xpart of b
b.copy(&a); // error: copy(X*) is hidden by copy(XX*)
}

Allowing the second copy operation, as would happen if base and derived scopes
were merged, would cause b's state to be partially updated. In most real cases, this
would lead to very strange behavior of operations on XX objects. | have seen exam-
ples of people getting caught in exactly this way when using the GNU C++ compiler
(87.1.4), which allowed the overloading.

In the case where copy () is virtual, one might consider having XX: : copy ()
override X: : copy (), but then one would need run-time type checking to catch the
problem with b.copy(&a) and programmers would have to code defensively to
catch such errors at run time (813.7.1). This was understood at the time, and | feared
that there were further problems that | didn't understand, so | chose the current rules
as the strictest, simplest, and most efficient.

In retrospect, | suspect that the overloading rules introduced in 2.0 (§11.2.2) might
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have been able to handle this case. Consider the call:
b.copy(&a)

The variable b is an exact type match for the implicit argument of XX: : copy, but
requires a standard conversion to match X: : copy. The variable a on the other hand,
is an exact match for the explicit argument of X: : copy, but requires a standard con-
version to match XX: :copy. Thus, had the overloading been allowed, the call
would have been an error because it was ambiguous.

3.6 Overloading

Several people had asked for the ability to overload operators. Operator overloading
"looked neat" and | knew from experience with Algol68 how the idea could be made
to work. However, | was reluctant to introduce the notion of overloading into C++
because:

[1] Overloading was reputed to be hard to implement and caused compilers to

grow to monstrous size.

[2] Overloading was reputed to be hard to teach and hard to define precisely.

Conseguently, manuals and tutorials would grow to monstrous size.

[3] Code written using operator overloading was reputed to be inherently ineffi-

cient.

[4] Overloading was reputed to make code incomprehensible.

If [3] or [4] were true, C++ would be better off without overloading. If [1] or [2] were
true, | didn't have the resources to provide overloading.

However, if all of these conjectures were false, overloading would solve some rea
problems for C++ users. There were people who would like to have complex num-
bers, matrices, and APL-like vectors in C++. There were people who would like
range-checked arrays, multidimensional arrays, and strings. There were at least two
separate applications for which people wanted to overload logical operators such as |
(or), & (and), and ™ (exclusive or). The way | saw it, the list was long and would
grow with the size and the diversity of the C++ user population. My answer to [4],
"overloading makes code obscure," was that several of my friends, whose opinion |
valued and whose experience was measured in decades, claimed that their code would
become cleaner if they had overloading. So what if one can write obscure code with
overloading? It is possible to write obscure code in any language. It matters more
how a feature can be used well than how it can be misused.

Next, | convinced myself that overloading wasn't inherently inefficient
[Stroustrup, 1984b] [ARM,8 12.1c]. The details of the overloading mechanism were
mostiy worked out on my blackboard and those of Stu Feldman, Doug Mcllroy, and
Jonathan Shopiro.

Thus, having worked out an answer to [3], "code written using overloading is
inefficient,” | needed to concern myself with [1] and [2], the issue of compiler and
language complexity. | first observed that use of classes with overloaded operators,
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such as complex and string, was quite easy and didn't put a mgjor burden on the
programmer. Next, | wrote the manual sections to prove that the added complexity
wasn't a serious issue; the manual needed less than a page and a half extra (out of a
42-page manual). Finally, I did the first implementation in two hours using only 18
lines of extra code in Cfront, and | felt | had demonstrated that the fears about defini-
tion and implementation complexity were somewhat exaggerated. Nevertheless, §11
will show that overloading problems did appear.

Naturaly, al these issues were not really tackled in this strict sequential order, but
the emphasis of the work did dowly shift from utility issues to implementation issues.
The overloading mechanisms were described in detail in [Stroustrup, 1984b], and
examples of classes using the mechanisms were written up [Rose, 1984] [Sho-

piro,1985].
In retrospect, | think that operator overloading has been a mgjor asset to C++. In
addition to the obvious use of overloaded arithmetic operators (+, *, +=, *=, etc.) for

numerical applications, [] subscripting, () application, and = assignment are often
overloaded to control access, and << and » have become the standard 1/0 operators
(88.3.1).

3.6.1 Basic Overloading
Here is an example that illustrates the basic techniques:

class conpl ex {
double re, im
public:
conpl ex(doubl e);
conpl ex(doubl e, doubl e) ;

friend conpl ex operator*(conpl ex, conpl ex) ;

friend conpl ex operator*(conpl ex, conpl ex) ,
...

b
This allows simple complex expressions to be resolved into function calls:

void f(conplex z1l, conplex z2)
{

}

complex z3 = zl+z2; // operator+(zl,z2)

Assignment and initialization needn't be explicitly defined. They are by default
defined as memberwise copy; see 811.4.1.

In my design of the overloading mechanism, | relied on conversions to decrease
the number of overloading functions needed. For example:
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voi d g(conmplex zl, conplex z2, double d)

{
complex z3 = zl +z2; // operator*(zl,z2)
complex z4 = z1+4d; // operator+(zl, conplex(d))
complex z5 = d+z2; // operator+(conplex(d), z2)
}

That is, | rely on the implicit conversion of doubl e to complex to alow me to sup-
port "mixed-mode arithmetic" with a single complex add function. Additional func-
tions can be introduced to improve efficiency or numerical accuracy.

In principle, we could do without implicit conversions al together by either
requiring explicit conversion or by providing the full set of complex add functions:

class complex {
...

public:
/'Ino implicit double->conplex conversion
...
friend compl ex operator+(compl ex, conpl ex) ;
friend compl ex operator*(compl ex, doubl e);
friend compl ex operator*(doubl e, conpl ex);
...

}s

Would we have been better off without implicit conversions? The language would
have been simpler without them, implicit conversions can certainly be overused, and a
cal involving a conversion function is typically less efficient than a call of an exactly
matching function.

Consider the four basic arithmetic operations. Defining the full set of mixed-
mode operations for complex and double requires 12 arithmetic functions com-
pared to 3 plus a conversion function when implicit conversion is used. Where the
number of operations and the number of types involved are higher, the difference
between the linear increase in the number of functions that we get from using conver-
sions and the quadratic explosion we get from requiring all combinations becomes
sgnificant. | have seen examples in which the complete set of operators was pro-
vided because conversion operators couldn't be safely defined. The result was more
than 100 functions defining operators. | consider that acceptable in special cases, but
not as a standard practice.

3.6.2 Members and Friends

Note how a global operator*, a friend function, was used in preference to a
member function to ensure that the operands of + are handled symmetrically. Had
member functions been used, we would have needed aresolution like this:
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void f(conplex zl, conplex z2, double d)

{
conmpl ex z3 = zl +z2; // zl.operator+(z2);
conplex z4 = zl+d; // zl.operatort(conplex(d))
complex z5 = d+z2; // d.operator+(z2)

}

This would have required us to define how to add a complex to the built-in type
double. This would not only require more functions, but also require modification
of code in separate places (that is, the definition of class complex and the definition
of the built-in type double). This was deemed undesirable. | considered allowing
the definition of additional operations on built-in types. However, | rejected the idea
because | did not want to change the rule that no type - built-in or user-defined - can
have operations added &fter its definition is complete. Other reasons were that the
definition of conversions between C's built-in types is too messy to alow additions,
and that the member-function solution to provide mixed-mode arithmetic is intrinsi-
cally more messy than the global-function-plus-conversion-function solution adopted.

The use of agloba function allows us to define operators so that their arguments
are logically equivalent. Conversely, defining an operator as a member ensures that
no conversions are invoked for the first (Ieftmost) operand. This alows us to mirror
the rules for operands that require an Ivalue as their leftmost operand, such as the
gnment operators:

class String {
...
public:
String(const char*);
String& operator=(const String&);
String& operator+=(const String&); // add to end

...
b
void f(String& s1, String& s2)
{
sl = s2;
sl = "asdf"; // fine: sl.operator=(String("asdf"));
"asdf" = s2; // error: String assigned to char*
}

Later, Andrew Koenig observed that the assignment operators such as += are more
fundamental and more efficient than their ordinary arithmetic cousins such as +. It is
often best to define only the operator functions as members and define the others as
global functions later:

String& String::operator+=(const String& s)

// add s onto the end of *this
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return *this;
}

String operator+(const String& sl1l, const String& s2)

String sum = s1;

sunt=s2;

return sum

}

Note that no friendship is required, and that the definition of the binary operator is
trivial and stylized. No temporary variables are needed to implement the call of +=,
and the local variable sum is all the temporary variable management that the user has
to consider. The rest can be handled smply and efficiently by the compiler (see
§3.6.4).

My original idea was to alow every operator to be either a member or a global
function. In particular, | had found it convenient to provided simple access operations
as member functions and then let users implement their own operators as global func-
tions. For operators such as + and - my reasoning was sound, but for operator = itself
weran into problems. Consequently, Release 2.0 required operator = to be a member.
This was an incompatible change that broke a few programs, so the decision wasn't
taken lightly. The problem was that unless operator = is a member, a program can
have two different interpretations of = dependent on the location in the source code.
For example:

class X {
/1 no operator=
b
void f(X a, Xb)
{
a =b; // predefined nmeaning of =
}

voi d operator=(X& X); // disallowed by 2.0

void g(X a, X b)
{

}
This could be most confusing, especially where the two assignments appeared in sep-
arately compiled source files. Since there is no built-in meaning for += for a class

that problem cannot occur for +=.

However, even in the original design of C++, | restricted operators [ ], (), and - >
to be members. It seemed a harmless restriction that eliminated the possibility of
some obscure errors because these operators invariably depend on and typically

a =b; // user-defined meaning of =
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modify the state of their left-hand operand. However, it is probably a case of unnec-
essary hannyism.

3.6.3 Operator Functions

Having decided to support implicit conversions and the model of mixed mode opera
tions supported by them, | needed a way of specifying such conversions. Construc-
tors of a single argument provide one such mechanism. Given

class conpl ex {
...
conpl ex(doubl e); // converts a double to a conpl ex
/...

b

we can explicitly or implicitly convert a double to a complex. However, this
allows the designer of a class to define conversions to that class only. It was not
uncommon to want to write a new class that had to fit into an existing framework.
For example, the C library has dozens of functions taking string arguments, that is,
arguments of type char*. When Jonathan Shopiro first wrote a full-blown String
class, he found that he would either have to replicate every C library function taking a
string argument:
int strlen(const char*); /1 original C function

int strlen(const Strings); // new C++ function

or provide a String to const char* conversion operator.
Consequently, | added the notion of conversion operator functions to C++:

class String {
I
operator const char*();
/...

b
int strlen(const char*); /1 original C function

void f(String& s)

{
...
strlen(s); // strlen(s.operator const char*())
I

}

Inreal use, implicit conversion has sometimes proven tricky to use. However, provid-
ing the full set of mixed-mode operations isn't pretty either. | would like a better
solution, but of the solutions | know, implicit conversions is the least bad.
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3.6.4 Efficiency and Overloading

Contrary to (frequently expressed) naive superstition there is no fundamental differ-
ence between operations expressed as function calls and operations expressed as oper-
ators. The efficiency issues for overloading were (and are) inlining and the avoidance
of spurious temporaries.

To convince myself of that, | first noted that code generated from something like
atb or v[i] was identical to what one would get from function cals add(a,b)
and v. elem(i).

Next, | observed that by using inlining, a programmer could ensure that simple
operations would not carry function-call overhead (in time or space). Finaly, |
observed that call-by-reference would be necessary to support this style of program-
ming effectively for larger objects (more about that in 83.7). This left the problems of
how to avoid spurious copying in examples such as a=b+c. Generating

assign(add(b,c),t); assign(t,a);
would not compare well to the
add_and_assign(b, c, a);

that a compiler can generate for a built-in type and a programmer can write explicitly.
In the end, | demonstrated [ Stroustrup, 1984b] how to generate

add_and_initialize(b,c,t); assign(t,a);

That left one "spurious" copy operation that can be removed only where it can be
proved that the + and = operations don't actually depend on the value assigned to
(aliasing). For a more accessible reference for this optimization, see [ARM]. This
optimization did not become available in Cfront until Release 3.0. | believe the first
available C++ implementation using that technique was Zortech's compiler. Walter
Bright easily implemented the optimization after | explained it to him over an ice
cream sundae at the top of the Space Needle in Seattle after an ANSI C++ standards
meeting in 1990.

The reason | considered this dightly sub-optimal scheme acceptable was that more
explicit operators such as += are available for hand-optimization of the most common
operations, and also that the absence of aiasing can be assumed in initializations.
Borrowing the Algol68 notion that a declaration can be introduced wherever it is
needed (and not just at the top of some block), | could enable an "initialize-only" or
"single-assignment” style of programming that would be inherently efficient - and
also less error-prone than traditional styles where variables are assigned again and
again. For example, one can write
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conpl ex conpute(conplex z, int i)

{
if {/*...*1) {
I
} .
complex t = f(z,i);
/...
zZ += t;
/...
return t;
}

rather than the more verbose and less efficient:

conpl ex conpute(conplex z, int i)

{
conpl ex t;
if (/*...*1 ) {

/...

} .
t = f(z,i);
1. ..
zZ =z +t;
...
return t;

}

For yet another idea for increasing run-time efficiency by eliminating temporaries, see
§11.6.3.

3.6.5 Mutation and New Operators

| considered it important to provide overloading as a mechanism for extending the
language and not for mutating it; that is, it is possible to define operators to work on
user-defined types (classes), but not to change the meaning of operators on built-in
types. In addition, | didn't want to allow programmers to introduce new operators. |
feared cryptic notation and having to adopt complicated parsing strategies like those
needed for Algol68. In this matter, | think my restraint was reasonable. See also
§11.6.1 and 811.6.3.

3.7 References

References were introduced primarily to support operator overloading. Doug Mcllroy
recalls that once | was explaining some problems with a precursor to the current oper-
ator overloading scheme to him. He used the word reference with the startling effect
that | muttered "Thank you," and Ieft his office to reappear the next day with the cur-
rent scheme essentially complete. Doug had reminded me of Algol68.

C passes every function argument by value, and where passing an object by value
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would be inefficient or inappropriate the user can pass a pointer. This strategy
doesn't work where operator overloading is used. In that case, notational convenience
is essential because users cannot be expected to insert address-of operators if the
objects are large. For example:

is acceptable (that is, conventional) notation, but
a= &b - &c

isnot. Anyway, &b-&c adready has ameaning in C, and | didn't want to change that.

It is not possible to change what a reference refers to after initialization. That is,
once a C++ reference is initialized it cannot be made to refer to a different object later;
it cannot be re-bound. | had in the past been bitten by Algol68 references where
rl=r2 can either assign through rl to the object referred to or assign a new refer-
ence value to rl (re-binding rl) depending on the type of r2. | wanted to avoid
such problems in C++.

If you want to do more complicated pointer manipulation in C++, you can use
pointers. Because C++ has both pointers and references, it does not need operations
for distinguishing operations on the reference itself from operations on the object
referred to (like Simula) or the kind of deductive mechanism employed by Algol68.

I made one serious mistake, though, by allowing anon-const reference to be ini-
tialized by anon-lvalue. For example:

voidincr(int&rr) { rr++; }
void g()

double ss = 1;
incr(ss); /1 note: double passed, int expected
/1 (fixed: error in Release 2.0)

}

Because of the difference in type the int& cannot refer to the doubl e passed so a
temporary was generated to hold an int initidlized by ss's value. Thus, incr ()
modified the temporary, and the result wasn't reflected back to the calling function.

The reason to alow references to be initialized by non-lvalues was to alow the
distinction between call-by-value and call-by-reference to be a detail specified by the
called function and of no interest to the caller. For const references, this is possible;
for non-const references it is not. For Release 2.0 the definition of C++ was
changed to reflect this.

It is important that const references can be initialized by non-lvalues and Ivalues
of types that require conversion. In particular, this is what allows a Fortran function
to be called with a constant:
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extern "Fortran" float sqrt(const float&);

void f()
{

}
In addition to the obvious uses of references, such as reference arguments, we consid-
ered the ability to use references as return types important. This allowed us to have a
very simple index operator for a string class:

sqrt(2); // call by reference

class String {

...
char& operator[](int index); // subscript operator
/1l return a reference
¥
void f(Strings s, int i)
{
char cl = s[i]; [// assign operator[]'s result
s[i] = cl; /1 assign to operator[]'s result
...
}

Returning a reference to the internal representation of a String assumes responsible
behavior by the users. That assumption is reasonable in many situations.

3.7.1 Lvaluevs. Rvalue

Overloading operator[] () to return a reference doesn't alow the writer of
operator[] () to provide different semantics for reading and writing an element
identified by subscripting. For example,

si[i] = s2[jl;

we can't cause one action on the String written to, si, and another on the string
read, s2. Jonathan Shopiro and | considered it essential to provide separate semantics
for read access and write access when we considered strings with shared representa-
tion and database accesses. In both cases, aread is a very simple and cheap operation,
whereas a write is a potentially expensive and complicated operation involving repli-
cation of data structures.

We considered two alternatives:

[1] Specifying separate functions for Ivalue use and rvalue use.

[2] Having the programmer use an auxiliary data structure.
The latter approach was chosen because it avoided a language extension and because
we considered the technique of returning an object describing alocation in a container
class, such as a String, more general. The basic ideais to have a helper class that
identifies a position in the container class much as a reference does, but has separate
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semantics for reading and writing. For example:

class char_ref { // identify a character in a String
friend class String;

inti;

String* s;

char _ref(String* ss, int ii) { s=ss; i=ii; }
public:

voi d operator=(char c);
operator char();
¥
Assigning to a char_ref is implemented as assignment to the character referenced.
Reading from a char_ref is implemented as a conversion to char returning the
value of the character identified:
voi d char _ref::operator=(char c) { s->r[i]=c; }
char _ref::operator char() { return s->r[i]; }

Note that only a String can create a char_ref. The actual assignment is imple-
mented by the String:

class String {
friend class char_ref;
char* r;
public:
char_ref operator[](int i)
{ return char_ref(this,i); }
...
h

Given these definitions,
sifi] = s2[jl;
means
sl.operator[](i) = s2.operator[](j)

where both sl.operator [] (i) and s2.operator[] (j) return temporary
objects of class char_ref. That in turn means

sl.operator[](i).operator=(s2.operator[](j).operator char())

Inlining makes the performance of this technique acceptable in many cases, and the
use of friendship to restrict the creation of char_ref s ensures that we do not get
lifetime temporary problems (86.3.2). For example, this technique has been used in
successful String classes. However, it does seem complicated and heavyweight for
simple uses such as access to individual characters, so | have often considered alterna-
tives. In particular, | have been looking for an alternative that would be both more
efficient and not a special-purpose wart. Composite operators (811.6.3) is one possi-
bility.
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3.8 Congtants

In operating systems, it is common to have access to some piece of memory con-
trolled directly or indirectly by two bits: one that indicates whether a user can write to
it and one that indicates whether a user can read it. This idea seemed to me directly
applicable to C++, and | considered allowing every type to be specified readonly or
writeonly. An interna memo dated January 1981 [Stroustrup,1981b] describes
the idea:
"'Until now it has not been possible in C to specify that a dataitem should be read
only, that is, that its value must remain unchanged. Neither has there been any
way of restricting the use of arguments passed to a function. Dennis Ritchie
pointed out that if readonly was a type operator, both facilities could be
obtained easily, for example:

readonly char tabl e[ 1024]; /* the chars in "table"
cannot be updated */

int f(readonly int * p)

{
/* "f" cannot update the data denoted by "p" */

1% %
}

The readonly operator is used to prevent the update of some location. It speci-
fies that out of the usually legal ways of accessing the location, only the ones that
do not change the value stored there are legal ."

The memo goes on to point out that
"The readonly operator can be used on pointers, too. *readonly is inter-
preted as "readonly pointer to," for example:

readonly int * p; /* pointer to read only int */

int * readonly pp; /* read only pointer to int */

readonly int * readonly ppp; /* read only pointer
to read only int */

Here, itis legal to assign anew value to p, but not to * p. It islegal to assign to
*pp, but nottopp, anditisillega to assignto ppp, or *ppp."

Finally, the memo introduceswriteonly:
"There is the type operator writeonly, which is used like readonly, but
prevents reading rather than writing. For example:

struct device_registers {
readonly int input_reg, status_reg;
witeonly int out put _reg, conmand_reg;

b
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void f(readonly char * readonly from
witeonly char * readonly to)

/*
"f" can obtain data through "front,
deposit results through "to",
but can change neither pointer

*/

t [

}

int * witeonly p;

Here, ++p is illegal because it involves reading the old value of p, but p=0 is

legal."

The proposal focused on specifying interfaces rather than on providing symbolic con-
stants for C. Clearly, areadonly valueis a symbolic constant, but the scope of the
proposal is far greater. Initially, | proposed pointers to readonly but not
readonly pointers. A brief discussion with Dennis Ritchie evolved the idea into
the readonly/writeonly mechanism that | implemented and proposed to an
internal Bell Labs C standards group chaired by Larry Rosier. There, | had my first
experience with standards work. | came away from a meeting with an agreement (that
is, avote) that readonly would be introduced into C - yes C, not C with Classes or
C++ - provided it was renamed const. Unfortunately, a vote isn't executable, so
nothing happened to our C compilers. Later, the ANSI C committee (X3J11) was
formed and the const proposal resurfaced there and became part of ANSI/ISO C.

In the meantime, | had experimented further with const in C with Classes and
found that const was a useful aternative to macros for representing constants only
if global consts were implicitly local to their compilation unit. Only in that case
could the compiler easily deduce that their value really didn't change. Knowing that
allows us to use simple consts in constant expressions and to avoid allocating space
for such constants. C did not adopt this rule. For example, in C++ we can write:

const int max = 14;

void f(int i)
int a[max+l]; // const 'nax' used in constant expression
switch (i) {

case max: // const 'max' used in constant expression
/...

}
}

whereas in C, even today we must write
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#define max 14
/- ..

because in C, consts may not be used in constant expressions. This makes consts
far less useful in C than in C++ and leaves C dependent on the preprocessor while C++
programmers can use properly typed and scoped consts.

39 Memory Management

Long before the first C with Classes program was written, | knew that free store
(dynamic memory) would be used more heavily in a language with classes than in
most C programs. This was the reason for the introduction of the new and del ete
operators in C with Classes. The new operator that both allocates memory from the
free store and invokes a constructor to ensure initialization was borrowed from Sim-
ula The del ete operator was a necessary complement because | did not want C
with Classes to depend on a garbage collector (82.13, 810.7). The argument for the
new operator can be summarized like this. Would you rather write:

X* p = new X(2);
or

struct X * p = (struct X *) malloc(sizeof(struct X)) ;
if (p==0) error("nenmory exhausted");
p->init(2);

and which version are you most likely to make a mistake in? Note that the checking
against memory exhaustion is done in both cases. Allocation using new involves an
implicit check and may invoke a user-supplied new_handler function; see
[2nd,89.4.3]. The arguments against - which were voiced quite a lot at the time -
were, "but we don't really need it," and, "but someone will have used new as an
identifier." Both observations are correct, of course.

Introducing operator new thus made the use of free store more convenient and less
error-prone. This increased its use even further so that the C free-store allocation rou-
tine malloc () used to implement new became the most common performance bot-
tleneck in real systems. This was no surprise either; the only problem was what to do
about it. Having real programs spend 50% or more of their time in malloc ()
wasn't acceptable.

| found per-class alocators and deallocators very effective. The fundamental idea
is that free-store memory usage is dominated by the allocation and deallocation of lots
of small objects from very few classes. Take over the allocation of those objects in a
separate allocator and you can save both time and space for those objects and also
reduce the amount of fragmentation of the general free store.

| don't remember the earliest discussions about how to provide such a mechanism
to the users, but | do remember presenting the "assignment to this" technique
(described below) to Brian Kernighan and Doug Mcllroy and summing up, "This is
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ugly as sin, but it works, and if you can't think of a better way either then that's the
way I'll doit," or wordsto that effect. They couldn't, so we had to wait until Release
2.0 for the cleaner solution now in C++ (see §10.2).

The idea was that, by default, memory for an object is alocated "by the system"”
without requiring any specific action from the user. To override this default behavior,
a programmer simply assigns to the thi s pointer. By definition, this points to the
object for which amember function is called. For example:

class X {
...

public:
X(int i);
...

h

XioX(int i)
{ this = my_all oc(sizeof (X));
/Il initialize

}
Whenever the X: : X (int) constructor is used, alocation will be done using
my_alloc (). This mechanism was powerful enough to serve its purpose, and sev-
eral others, but far too low level. It didn't interact well with stack allocation or with
inheritance. It was error-prone and repetitive to use when - as is typical - an impor-
tant class had many constructors.

Note that static and automatic (stack allocated) objects were always possible and
that the most effective memory management techniques relied heavily on such
objects. The string class was atypical example. String objects are typically on the
stack, so they require no explicit memory management, and the free store they rely on
is managed exclusively and invisibly to the user by the String member functions.

The constructor notation used here is discussed in §3.11.2 and §3.11.3.

310 Type Checking

The C++ type checking rales were the result of experience with C with Classes. All
function calls are checked at compile time. The checking of trailing arguments can be
suppressed by explicit specification in a function declaration. This is essentia to
alow C's printf ():

int printf(const char* . . .); // accept any argunment after
/1 the initial character string

...

printf("date: % % 19%\n", nont h, day, year); // maybe right
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Several mechanisms were provided to alleviate the withdrawal symptoms that many C
programmers feel when they first experience strict checking. Overriding type check-
ing using the ellipsis was the most drastic and least recommended of those. Function
name overloading (83.6.1) and default arguments [Stroustrup,1986] (82.12.2) made it
possible to give the appearance of a single function taking a variety of argument lists
without compromising type safety.

In addition, | designed the stream 1/O system to demonstrate that weak checking
wasn't necessary even for 1/0O (see 88.3.1):

cout <<"date: "<<month<<' '<<day<<" 19"<<year<<'\n';

is atype-safe version of the example above.

| saw, and still see, type checking as a practical tool rather than a goal in itsef. It
is essential to realize that eliminating every type violation in a program doesn't imply
that the resulting program is correct or even that the resulting program cannot crash
because an object was used in a way that was inconsistent with its definition. For
example, a stray electric pulse may cause acritical memory bit to change its value in a
way that is impossible according to the language definition. Equating type insecuri-
ties with program crashes and program crashes with catastrophic failures such as air-
plane crashes, telephone system breakdowns, and nuclear power station meltdowns is
irresponsible and misleading.

People who make statements to that effect fail to appreciate that the reliability of a
system depends on all of its parts. Ascribing an error to a particular part of the total
system is simply pin-pointing the error. We try to design life-critical systems so that
a single error or even many errors will not lead to a "crash.” The responsibility for
the integrity of the system is in the people who produce the system and not in any one
part of the system. In particular, type safety is not a substitute for testing even though
it can be a great help in getting a system ready for testing. Blaming programming lan-
guage features for a specific system failure, even a purely software one, is confusing
theissue; see adlso §16.2.

3.11 Minor Features

During the transition from C with Classes to C++, several minor features were added.

3.11.1 Comments
The most visible minor change was the introduction of BCPL-style comments:

int a; /* Cstyle explicitly term nated comment */
int b; // BCPL-style comment term nated by end-of-1ine

Since both styles of comments are alowed, people can use the style they like best.
Personally, | like the BCPL-style for one-line comments. The immediate cause for
introducing the // comments was that | sometimes made silly mistakes forgetting to
terminate C comments and found that the three extra characters | used to terminate a
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/* comment sometimes made my lines wrap around on my screen. | also noted that
/1 comments were more convenient than /* comments for commenting out small
sections of code.

The addition of // was soon discovered not to be 100% C compatible because of
examples such as

x = a [* divide */b

which means x=a in C++ and x=a/bin C. At the time and aso now, most C++ pro-
grammers considered such examples of little real importance.

3.11.2 Constructor Notation

The name ''new-function” for constructors had been a source of confusion, so the
named constructor was introduced. At the same time, the concept was extended to
allow constructors to be used explicitly in expressions. For example,

complex i = conpl ex(0, 1);
conpl ex operator+(conplex a, conplex b)
{

return conpl ex(a.re+b.re,a.imb.im;
}

The expressions of the form complex (X, y) are explicit invocations of a construc-
tor for class complex.
To minimize the number of new keywords, | didn't use an explicit syntax like this:

class X {
constructor();
destructor();
...

h
Instead, | chose a declaration syntax that mirrored the use of constructors:

class X {
X(); /Il constructor
~X(); [// destructor (~ is the C conplenent operator)
...

}s

This may have been overly clever.

The explicit invocation of constructors in expressions proved very useful, but it is
also a fertile source of C++ parsing problems. In C with Classes, new () and
delete () functions had been public by default. This anomaly was eliminated so
that C++ constructors and destructors obey the same access control rules as other
functions. For example:
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class Y {
Y(); // private constructor
...

H

Y a; // error: cannot access Y::Y(): private menmber
This led to severa useful techniques based on the idea of controlling operations by
hiding the functions that perform them; see §11.4.
3.11.3 Qualification

In C with Classes, a dot was used to express membership of a class as well as to
express selection of a member of a particular object. This had been the cause of some
minor confusion and could also be used to construct ambiguous examples. Consider:

class X {

int a;
public:
void set(X);
h
void X.set(X arg) { a = arg.a; }; /1l so far so good

class X X; // common C practice:
/'l class and object with the same name

void f()
{
...
X.a; [/ now, which X do |I mean?
/1l the class or the object?
/1

}

To aleviate this, : : was introduced to mean membership of class, and . was retained
exclusively for membership of object. The example thus becomes:

void X::set(X arg) { a = arg.a; };
class X X;

void g()

{
...
X. a; /1 object.menmber
X::a; [/ class::menmber
/1
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3.11.4 Initialization of Global Objects

It was my aim to make user-defined types usable wherever built-in types were, and |
had experienced the lack of global variables of class type as a source of performance
problems in Simula. Consequently, global variables of class type were alowed in
C++. This had important and somewhat unexpected ramifications. Consider:

cl ass Double {
...
Doubl e( doubl e) ;

b
Doubl e s1 = 2; /!l construct s1 from?2
Double s2 = sqrt(2); // construct sl fromsqrt(2)

Such initialization cannot in general be done completely at compile time or at link
time. Dynamic (run-time) initialization is necessary. Dynamic initiaization is done
in declaration order within a trandation unit. No order is defined for initialization of
objects in different trandation units except that al static initialization takes place
before any dynamic initialization.

3.11.4.1 Problemswith Dynamic Initialization

My assumption had been that global objects would be rather simple and therefore
require relatively uncomplicated initialization. In particular, | had expected that glo-
bal objects with initialization that depended on other global objects in other compila-
tion units would be rare. | regarded such dependencies smply as poor design and
therefore didn't fed obliged to provide specific language support to resolve them. For
simple examples, such as the one above, | was right. Such examples are useful and
cause no problems. Unfortunately, | found another and more interesting use of
dynamically initialized global objects.

A library often has some actions that need to be performed before its individual
parts can be used. Alternatively, alibrary may provide objects that are supposed to be
pre-initialized so that users can use them directly without first having to initialize
them. For example, you don't have to initidize C's stdin and stdout: the C
startup routine does that for you. Similarly, C's exit() closes stdin and
stdout. Thisis avery specia treatment, and no equivalent facilities are offered for
other libraries. When | designed the stream 1/O library, | wanted to match the conve-
nience of C's 1/0O without introducing special-purpose warts into C++. Thus, | smply
relied on dynamic initialization of cout and cin.

That worked nicely, except that | had to rely on an implementation detail to ensure
that cout and cin were constructed before user code was run and destroyed after the
last user code had completed. Other implementers were less considerate and/or care-
ful. People found their programs could dump core because cout was used before
constructed, or some of their output could be lost because cout had been destroyed
(and flushed) too soon. In other words, we had been bitten by the order dependency
that | had considered "unlikely and poor design."
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3.11.4.2 Workarounds for Order Dependencies

The problem wasn't insurmountable, though. There are two solutions: The obvious
one is to add a first-time switch to every member function. This relies on globa data
being initialized to O by default. For example:

class Z {
static int first_time;
void init();
...
public:
void f1();
...
void fn() ;
h
Every member function would look like this:
void Z:fl()
{
if (first_time ==0) {
init();
first_tine = 1;
}
...
}

This is tedious and the overhead is potentially significant for simple functions such as
a single character output operation.

In his redesign of stream 1/0O (88.3.1), Jerry Schwarz used a clever variant of this
[Schwarz,1989]. An <iostream. h> header contains something like this:

class io_counter {
static int count;
public:
io_counter()

if (count++ == 0) { /* initialize cin, cout, etc. */ }
}
~i o_counter()
{

if (--count == 0) { /* clean up cin, cout, etc. */ }
}

b

static io_counter io_init;
Now every file that includes the iostream header also creates an io_counter object
and initializes it with the effect of increasing io_counter: : count. The firg time
this happens the library objects will be initialized. Since the library header appears
before any use of the library facilities proper initialization is ensured. Since
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destruction is done in reverse order of construction, this technique also ensures that
cleanup is done &fter the last use of the library.

This technique solves the order dependency problem in general at the trivial cost
of having the library provider add a few lines of highly stylized code. Unfortunately,
the performance implications can be serious. Where such tricks are used, most C++
object files will contain dynamic initialization code and (assuming an ordinary linker)
that means that these dynamic initialization routines are scattered throughout the
address space of aprocess. On a virtual memory system, it means that most pages of
a program will be brought into primary memory during the initial startup phase and
during the final cleanup. This is not well-behaved virtual memory use and can lead to
seconds of delays in the startup of significant applications.

A trivia solution for an implementer is to modify the linker to coalesce dynamic
startup code in a single place. Also, the problem doesn't occur unless a system sup-
ports some form of dynamic loading of program into primary memory. However, that
is cold comfort for a C++ user who suffers from the problem [Reiser, 1992]. Funda
mentally, this violates the dictum that a C++ feature not only has to be useful, it also
has to be affordable (84.3). Can the problem be solved by adding a feature? On the
surface, it can't because neither a language design nor even an officid standards com-
mittee can legislate efficiency. The proposals | have seen attack the ordering problem
- which has already been solved by Jerry's initiaization trick - rather than the effi-
ciency problems they imply. | suspect that the real solution is to find some means to
encourage implementers to avoid "virtual memory bashing” by dynamic initial-
ization routines. Techniques for achieving that are known, but some explicit wording
in the standard may be needed as encouragement.

3.11.4.3 Dynamic Initialization of Built-in Types

In C, a dtatic object can only be initialized using a dightly extended form of constant
expressions. For example:

double PI = 22/7; /* ok */
doubl e sqrt2 = sqrt(2); /* error in C */

However, C++ alows completely general expressions for the initialization of class
objects. For example:

Double s2 = sqrt(2); //ok

Thus, the built-in types had been made "second-class citizens" because the support
for classes had progressed beyond what was provided for the built-in types. The ano-
maly was easily removed, but the facility was not made generaly available until
Release 2.0:

double sqrt2 = sqrt(2); // ok in G+ (2.0 and higher)
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3.11.5 Declaration Statements

| borrowed the Algol68 notion that a declaration can be introduced wherever it is
needed (and not just at the top of some block). Thus, | enabled an "initialize-only"
or "single-assignment” style of programming that is less error-prone than traditional
styles. This style is essential for references and constants that cannot be assigned and
inherently more efficient for types where default initialization is expensive. For
example:

void f(int i, const char* p)

{
if (i<=0) error("negative i ndex");
const int len = strlen(p);
String s(p);
...

}

Having constructors guarantee initialization (82.11) is another part of the effort to
minimize problems caused by uninitialized variables.

3.11.5.1 Declarations in for-statements

One of the most common reasons to introduce a new variable in the middle of ablock
isto get avariable for aloop. For example:

inti;

for (i=0; i<MAX; i++) [/
To avoid separating the declaration of the variable from its initialization, | alowed the
declaration to be moved after the for:

for (int i1=0; i<MAX; i++) //

Unfortunately, | didn't take the opportunity to change the semantics to limit the scope
of avariable introduced in this way to the scope of the for-statement. The reason for
this omission was primarily to avoid adding a specia case to the rule that says ''the
scope of avariable extends from its point of declaration to the end of its block."

This rule is the subject of much discussion and may be revised to match the rule
for declarations in conditions (83.11.5.2).

3.11.5.2 Declarations in Conditions

Where people conscientiously try to avoid uninitialized variables, they are left with:
[1] Variables used for input:

int i;
cin>>i;

[2] Variables used in conditions:
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Tok* ct;

if (ct = gettok()) { /* ... */}
During the design of the run-time type identification mechanism in 1991 (814.2.2.1), |
realized that the latter cause of uninitialized variables could be eliminated by allowing
declarations to be used as conditions. For example:

if (Tok* ct = gettok()) {
// ct is in scope here

}

// ct is not in scope here

This feature is not merely a cute trick to save typing. It is a direct consequence of the
ideal of locality. By joining the declaration of avariable, its initialization, and the test
on the result of that initialization, we achieve a compactness of expression that helps
eliminate errors arising from variables being used before they are initialized. By lim-
iting their scope to the statement controlled by the condition, we aso eliminate the
problem of variables being "reused" for other purposes or accidentally used after
they were supposed to have outlived their usefulness. This eliminated a further minor
source of errors.

The inspiration for allowing declarations in expressions came from expression lan-
guages - in particular from Algol68. | "remembered" that Algol68 declarations
yielded values and based my design on that. Later, | found my memory had failed
me: declarations are one of the very few constructs in Algol68 that do not yield val-
ues! | asked Charles Lindsey about this and received the answer, "Even Algol68 has a
few blemishes where it isn't completely orthogonal." | guess this just proves that a
language doesn't have to live up to its own ideals to provide inspiration.

If I were to design a language from scratch, | would follow the Algol68 path and
make every statement and declaration an expression that yields avalue. | would prob-
ably also ban uninitialized variables and abandon the idea of declaring more that one
name in a declaration. However, these ideas are clearly far beyond what would be
acceptable for C++.

312 Rdationshipto Classic C

With the introduction of the name C++ and the writing of a C++ reference manual
[Stroustrup,1984], compatibility with C became an issue of mgor importance and a
point of controversy.

Also, in late 1983 the branch of Bell Labs that developed and supported UNIX
and produced AT&T's 3B series of computers became interested in C++ to the point
where they were willing to put resources into the development of C++ tools. Such
development was necessary for the evolution of C++ from a one-man show to a lan-
guage that a corporation could base critical projects on. Unfortunately, it also implied
that development management needed to consider C++.
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The first demand to emerge from development management was that of 100%
compatibility with C. The ideal of C compatibility is quite obvious and reasonable,
but the reality of programming isn't that simple. For starters, which C should C++ be
compatible with? C dialects abounded, and though ANSI C was emerging, it was till
years from having a stable definition, and its definition allowed many dialects. |
remember at the time calculating - partly in jest - that there were about 3*2 strictly-
conforming ANSI C dialects. That nhumber was based on taking the number of unde-
fined and implementation-defined aspects and using it as the exponent for the average
number of alternatives.

Naturaly, the average user who wanted C compatibility wanted C++ to be com-
patible with the local C dialect. This was an important practical problem and a great
concern to me and my friends. It seemed far less of a concern to business-oriented
managers and salesmen, who either didn't quite understand the technical details or
would like to use C++ to tie users into their software and/or hardware. The Bell Labs
C++ developers, on the other hand, independently of who they worked for, were
"emotionally committed to portability as a concept [Johnson, 1992]" and resisted
management pressure to enshrine a particular C dialect in the C++ definition.

Another side of the compatibility issue was more critical: "In which ways must
C++ differ from C to meet its fundamental goals?' Also, "In which ways must C++
be compatible with C to meet its fundamental goals?' Both sides of the issue are
important, and revisions were made in both directions during the transition from C
with Classes to Release 10 of C++. Slowly and painfully, an agreement emerged that
there would be no gratuitous incompatibilities between C++ and ANSI C (when it
became a standard) [Stroustrup,1986] but also that there was such a thing as an
incompatibility that was not gratuitous. Naturally, the concept of "gratuitous incom-
patibilities" was atopic of much debate and it took up a disproportionate part of my
time and effort. This principle has lately been known as "C++: As close to C as pos-
sible - but no closer,” &fter the title of a paper by Andrew Koenig and me
[Koenig,1989]. One measure of the success of this policy is that every example in
K&R2 [Kernighan,1988] is written in the C subset of C++. Cfront was the compiler
used for the primary testing of the K& R2 code examples.

Some conclusions about modularity and how a program is composed out of sepa-
rately compiled parts were explicitly reflected in the original C++ reference manual
[Stroustrup,1984]:

[ Names are private unless they are explicitly declared public.

[b] Names are local to their file unless explicitly exported from it.

[c] Static type rules are checked unless the check is explicitly suppressed.

[d] A classis ascope (implying that classes nest properly).

Point [a] doesn't affect C compatibility, but [b], [c], [d] imply incompatibilities:

[1] The name of a non-local C function or object is by default accessible from

other compilation units.

[2] C functions need not be declared before use and calls are by default not type

checked.

[3] C structure names don't nest (even when they are lexically nested).
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In addition,

[4] C++ has a single namespace, whereas C had a separate namespace for ' 'struc-

ture tags" (82.8.2).

The "compatibility wars" now seem petty and boring, but some of the underlying
issues are still unresolved, and we are till struggling with them in the ANSI/ISO stan-
dards committee. | strongly suspect that the reason the compatibility wars were
drawn out and curiously inconclusive was that we never quite faced the deeper issues
related to the differing goals of C and C++ and saw compatibility as a set of separate
issues to be resolved individually.

Typicaly, the least fundamental issue, [4] "namespaces,” took up the most effort,
but was eventually resolved by a compromisein [ARM].

| had to compromise the notion of a class as a scope, [3], and accept the C "solu-
tion'' to be alowed to ship Release 1.0. One practical problem was that | had never
realized that a C struct didn't constitute a scope so that examples like this:

struct outer {
struct inner {
inti;
b
int j;
H
struct inner a = { 1 };
are legal C. Not only that, but such code was found in the standard UNIX header
files. When the issue came up towards the end of the compatibility wars, | didn't
have time to fathom the implications of the C "solution," and it was much easier to
agree than to fight the issue. Later, after many technical problems and much discon-
tent from users, nested class scopes were reintroduced into C++ in 1989 [ARM]
(813.5).

After much hassle, C++'s stronger type checking of function calls was accepted
(unmodified). An implicit violation of the static type system is the origina example
of a C/C++ incompatibility that is not gratuitous. The ANSI C committee adopted a
dightly weaker version of C++'s rules and notation on this point and declared uses
that don't conform to the C++ rules obsol ete.

| had to accept the C rule that global names are by default accessible from other
compilation units. There simply wasn't any support for the more restrictive C++ rule.
This meant that C++, like C, lacked an effective mechanism for expressing modularity
above the level of the class and the file. This led to a series of complaints until the
ANSI/ISO committee accepted namespaces (817) as the mechanisms to avoid name
space pollution. However, Doug Mcllroy and others argued that C programmers
would not accept a language in which every object and function meant to be accessi-
ble from another compilation unit had to be explicitly declared as such. They were
probably right at the time and saved me from making a serious mistake. | am now
convinced that the original C++ solution wasn't elegant enough anyway.

One problem with compatibility issues is that there always seem to be two camps
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that are so sure of their views they hardly fed the need to argue their cases. The first
camp demands 100% compatibility - often without having understood the implica-
tions. For example, many who demand 100% C compatibility are surprised to learn
that this would imply incompatibilities with existing C++ that would cause tens of
millions of lines of C++ code to stop compiling. In many cases, the demand for 100%
compatibility is based on the assumption that C++ has few users. It is also not
unusua for people to hide ignorance of C++ or dislike of newer features behind a
demand for 100% compatibility.

The other camp can be equally annoying by declaring C compatibility a non-issue
and arguing for new features that would seriously inconvenience people who want to
mix C and C++ code. Naturaly, the more extreme claims of each camp make the
other camp even further entrenched out of fear of losing aspects of a language they
care about. Where - as amost aways - cooler heads prevail and the needs of the
people involved and the actual facts of C and C++ usage are taken into account, the
debates usually converge on the more constructive examination of the minutiae of the
compromise. At the organizational meeting of the X3J16 ANSI committee, Larry
Rosier, the origind ANSI C committee editor, explained to a skeptical Tom Plum,
"C++ is C as we tried to make it, but couldn't." This is probably an overstatement,
but not too far from the truth for the common subset of C and C++.

3.13 Toals for Language Design

Theory and tools more advanced than a blackboard have not been given much space
in the description of the design and evolution of C++. 1 tried to use YACC (an
LALR(l) parser generator [Aho,1986]) for the grammar work, and was defeated by
C's syntax (82.8.1). | looked at denotational semantics, but was again defeated by
quirks in C. Ravi Sethi had looked into that problem and found that he couldn't
express the C semantics that way [Sethi,1980].

The main problem was the irregularity of C and the humber of implementation-
dependent and undefined aspects of a C implementation. Much later, the ANSI/ISO
C++ committee had a stream of formal definition experts explain their techniques and
tools and give their opinions of the extent to which a genuine formal approach to the
definition of C++ would help us in the standards effort. | also looked at the formal
specifications of ML and Modula-2 to see if aforma approach was likely to lead to a
shorter and more elegant description than traditional English text would. | don't think
that such a description of C++ would be less likely to be misinterpreted by imple-
menters and expert users. My conclusion is that a formal definition of alanguage that
is not designed together with a forma definition method is beyond the ability of al
but a handful of experts in forma definition. This confirms my conclusion at the
time.

However, abandoning hope of a formal specification left us a the mercy of impre-
cise and insufficient terminology. Given that, what could | do to compensate? | tried
to reason about new features both on my own and with others to check my logic.
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However, | soon developed a healthy disrespect for arguments (definitely including
my own) because | found that it is possible to construct a plausible logical argument
for just about any feature. On the other hand, you simply don't get a useful language
by accepting every feature that makes life better for someone. There are far too many
reasonabl e features and no language could provide them all and stay coherent. Conse-
quently, wherever possible, | tried to experiment.

Unfortunately, you usualy cannot conduct proper experiments either. It is not
possible to provide full-scale systems with implementation, tools, and education and
have some people use the one and some people use the other and measure the differ-
ences. People are too different, projects are too different, and suggested features
mutate during the effort to define, implement, and explain them. So | used the effort
to define, implement, and explain features as a design aid. Once a feature was imple-
mented, | and afew others used it and | tried as best | could to be highly suspicious of
any positive claims made. As far as possible, | relied on the opinions of experienced
programmers considering real applications only. Thus, | tried to compensate for the
fundamental limitations of my "experiments." These experiments were usually only
comparisons of implementations, examinations of quality of source code for small
examples, together with run-time and space measurements on those examples. At
least | had feedback in the design process so | could rely on experience rather than on
pure thought alone. | firmly believe that language design isn't an exercise in pure
thought, but a very practical exercise in balancing needs, ideas, techniques, and con-
straints. A good language is not merely designed, it is grown. The exercise has more
to do with engineering, sociology, and philosophy than with mathematics.

In retrospect, | wish | had known a way of formalizing the rules for type conver-
sion and argument matching. This topic has proven very hard to get right and to doc-
ument unambiguously. Unfortunately, | suspect that no rational and general formal-
ism would be able to deal with the very irregular C rules governing the built-in types
and operators in a convenient manner.

There is a great temptation for a language designer to provide features and ser-
vices where the alternative is for users to use a workaround. The screams when an
addition is rejected are usualy far louder than the complaints that ''yet another use-
less feature has been added.” Thisis aso a serious problem for standards committees
(86.4). The worst variant of this argument is the cult of orthogonality. Many people
fed that if the language would be more orthogonal if it provided a feature, then that is
a conclusive argument for accepting that feature. | agree that orthogonality is a good
thing in principle, but note that it also carries costs. Usually, despite al good inten-
tions about orthogonality, the definition of a combination of features does require
extra work on the manual and the tutorial material. Most often, implementation of
combinations prescribed by the ideal of orthogonality is harder than people realize. In
the case of C++, | aways considered the run-time and space cost of orthogonality for
people who did not use a combination. If that cost couldn't at least in principle be
made zero, | was most reluctant to admit the feature - however orthogonal. Thus
orthogonality is a secondary principle - after the primary but subjective concerns of
utility and efficiency.
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My impression was and is that many programming languages and tools represent
solutions looking for problems, and | was determined that my work should not fall
into that category. Thus, | follow the literature on programming languages and the
debates about programming languages primarily looking for ideas for solutions to
problems my colleagues and | have encountered in real applications. Other program-
ming languages congtitute a mountain of ideas and inspiration - but it has to be mined
carefully to avoid featurism and inconsistencies. The main sources for ideas for C++
were Simula, Algol68, and later Clu, Ada, and ML. The key to good design is insight
into problems, not the provision of the most advanced features.

3.14 The C++ Programming Language (1st edition)

In the autumn of 1984, my next-door neighbor at work, Al Aho, suggested that | write
a book on C++ structured along the lines of Brian Kernighan and Dennis Ritchie's
The C Programming Language [Kernighan, 1978] based on my published papers,
internal memoranda, and the C++ reference manual. Completing the book took nine
months. | completed the book mid-August 1985 and the first copies appeared mid-
October. Thanks to a curiosity in the US publishing industry the book has a 1986
copyright.

The preface mentions the people who had by then contributed the most to C++:
Tom Cargill, Jm Coplien, Stu Feldman, Sandy Fraser, Steve Johnson, Brian Ker-
nighan, Bart Locanthi, Doug Mcllroy, Dennis Ritchie, Larry Rosier, Jerry Schwarz,
and Jonathan Shopiro. My criterion for adding a person to that list was that | was able
to identify a specific C++ feature that the person has caused to be added.

The book's opening line, "C++ is a genera-purpose programming language
designed to make programming more enjoyable for the serious programmer,” was
deleted twice by reviewers who refused to believe that the purpose of programming-
language design could be anything but some serious mutterings about productivity,
management, and software engineering. However,

"'C++ was designed primarily so that the author and his friends would not have to

program in assembler, C, or various modern high-level languages. Its main pur-

pose is to make writing good programs easier and more pleasant for the individual
programmer."
This was the case whether those reviewers were willing to believe it or not. The focus
of my work is the person, the individual (whether part of a group or not), the program-
mer. This line of reasoning has been strengthened over the years and is even more
prominent in second edition [2nd] where design and software development issues are
discussed in greater depth.

The C++ Programming Language was the definition of C++ and the introduction
to C++ for an unknown number of programmers, and its presentation techniques and
organization (borrowed with acknowledgments if not aways sufficient skill from The
C Programming Language) have become the basis for an almost embarrassing num-
ber of articles and books. It was written with a fierce determination not to preach any
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particular programming technique. In the same way | feared to build limitations into
the language out of ignorance and misguided paternalism, | didn't want the book to
turn into a manifesto for my personal preferences.

315 The Whatis? Paper

Having shipped Release 10 and sent the camera-ready copy of the book to the print-
ers, | finally found time to reconsider larger issues and to document overall design
issues. Just then, Karel Babcisky (the chairman of the Association of Simula Users)
phoned from Odlo with an invitation to give a talk on C++ at the 1986 ASU confer-
ence in Stockholm. Naturally, | wanted to go, but | was worried that presenting C++
at a Simula conference would be seen as a vulgar example of self-advertisement and
an attempt to steal users away from Simula. After all, | said, ''C++ is not Simula so
why would Simula-users want to hear about it." Karel replied, "Ah, we are not hung
up on syntax." This provided me with an opportunity to write not only about what
C++ was but also what it was supposed to be and where it didn't measure up to those
ideals. The result was the paper What is "Object-Oriented Programming?"
[Stroustrup,1986b]. An extended version was presented to the firss ECOOP confer-
ence in June 1987 in Paris.

The significance of this paper is that it is the first exposition of the set of tech-
niques that C++ was aiming to provide support for. All previous presentations, to
avoid dishonesty and hype, had been restricted to describe what features were aready
implemented and in use. The "whatis paper" defined the set of problems | thought a
language supporting data abstraction and object-oriented programming ought to solve
and gave examples of language features needed.

The result was a reaffirmation of the importance of the "multi-paradigm” nature
of C++:

"Object-oriented programming is programming using inheritance. Data abstrac-

tion is programming using user-defined types. With few exceptions, object-

oriented programming can and ought to be a superset of data abstraction. These
techniques need proper support to be effective. Data abstraction primarily needs
support in the form of language features, and object-oriented programming needs
further support from a programming environment. To be general purpose, a lan-
guage supporting data abstraction or object-oriented programming must enable
effective use of traditional hardware."

The importance of static type checking was also strongly emphasized. In other words,

C++ follows the Simula rather than the Smalltalk model of inheritance and type

checking:

"A Simula or C++ class specifies a fixed interface to a set of objects (of any

derived class), whereas a Smalltalk class specifies an initial set of operations for

objects (of any subclass). In other words, a Smalltalk class is a minimal specifica
tion and the user is free to try operations not specified, whereas a C++ class is an
exact specification and the user is guaranteed that only operations specified in the
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class declaration will be accepted by the compiler.”
This has deep implications for the way one designs systems and for what language
facilities are needed. A dynamically typed language such as Smalltalk simplifies the
design and implementation of libraries by postponing type checking to run time. For
example (using C++ syntax):

void f() // dynam c checking only, not C++

{
stack cs;
cs. push(new Saab900) ;
cs. pop()->takeoff(); // Oops! Run-time error:
/| a car does not have a
/1 takeoff method.
}

This delayed type-error detection was considered unacceptable for C++, yet there had
to be a way of matching the notational convenience and the standard libraries of a
dynamically typed language. The notion of parameterized types was presented as the
(future) solution for that problem in C++:

void g()
st ack(pl ane*) cs;

cs. push(new Saab37b); // ok a Saab37b is a pl ane
cs. push(new Saab900); // error, type msnmatch:
/1 car passed, plane* expected.

cs. pop() - >t akeof f () ; /1 no run-time check needed
cs. pop()->takeof f(); /1 no run-time check needed

}

The key reason for considering compile-time detection of such problems essential was
the observation that C++ is often used for programs executing where no programmer
ispresent. Fundamentally, the notion of static type checking was seen as the best way
of providing as strong guarantees as possible for a program rather than merely a way
of gaining run-time efficiency.

This is partly a special case of the general notion that what can be guaranteed by
machine and from general rules shouldn't be done by people and by debugging. Nat-
uraly, it also helps debugging. However, the most fundamental reason for relying on
statically checked interfaces was that | was - as | ill am - firmly convinced that a
program composed out of statically type-checked parts is more likely to faithfully
express a well-thought-out design than a program relying on weakly-typed interfaces
or dynamically-checked interfaces. Please remember though, that not every interface
can be exclusively staticaly checked and that statical checking doesn't imply the
absence of errors.

The "whatis" paper lists three aspects in which C++ was deficient:

[1] "Ada, Clu, and ML support parameterized types. C++ does not; the syntax
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used here is simply devised as an illustration. Where needed, parameterized
classes are "faked" using macros. Parameterized classes would clearly be
extremely useful in C++. They could easily be handled by the compiler, but
the current C++ programming environment is not sophisticated enough to sup-
port them without significant overhead and/or inconvenience. There need not
be any run-time overheads compared with a type specified directly."

[2] "As programs grow, and especially when libraries are used extensively, stan-
dards for handling errors (or more generally: "exceptional circumstances")
become important. Ada, Algol68, and Clu each support a standard way of
handling exceptions. Unfortunately, C++ does not. Where needed, exceptions
are "faked" using pointers to functions, "exception objects," "error states,"
and the C library signal and longjmp facilities. This is not satisfactory in
general and fails even to provide a standard framework for error handling.”

[3] "Given this explanation, it seems obvious that it might be useful to have a
class B inherit from two base classes Al and A2. Thisis called multiple inher-
itance."

All three facilities were linked to the need to provide better (that is, more general and
more flexible) libraries. All are now available in C++ (templates, §15; exceptions,
§16; multiple inheritance, §812). Note that adding multiple inheritance and templates
was considered plausible directions for further evolution as ealy as
[Stroustrup, 1982b]. That paper also mentions exception handling as a possibility, but
| was worried rather that positive about the possible need to move in that direction.

As usual, | pointed out that demands on run-time and space efficiency, and of the

ability to coexist with other languages on traditional systems provided "limits to per-
fection" that could not be violated by alanguage claiming to be "general purpose.”
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C++ Language Design Rules

If the map and the terrain disagree,
trust the terrain.
- Swiss army aphorism

Rules for the design of C++ — overall design aims — sociological rules —
C++ as alanguage supporting design — language-technical rules— C++ as
a language for low-level programming.

4.1 Rules and Principles

To be genuinely useful and pleasant to work with, a programming language must be
designed according to an overal view that guides the design of its individual language
features. For C++, this overall view takes the form of a set of rules and constraints. |
call them rules because | find the term principles pretentious in a field as poor in gen-
uine scientific principles as programming language design. Also, to many people the
term principle implies the unrealistic implication that no exceptions are acceptable.
My rules for the design of C++ most certainly have exceptions. In fact, if a rule and
practical experience are in conflict, the rule gives way. This may sound crude, but it
is a variant of the principle that theory must account for experimental data or be
replaced by a better theory.

These rules cannot be brainlessly applied; nor can they be replaced by a few glib
dogans. | saw my job as language designer as deciding which problems needed to be
addressed, deciding which problems could be addressed within the framework of C++,
and then maintaining balance between the various rules of design for the actual lan-
guage feature.

The rules guided the working out of features. However, the framework for
improvements was provided by the fundamental aims of C++:
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Aims:
C++ makes programming more enjoyable for serious programmers.
C++ is a genera -purpose programming language that
- is abetter C
- supports data abstraction
- supports object-oriented programming

| have organized the rules into four broad sections. The first contains overall ide-
as for the whole language. These are so genera that individual language features
don't enter directly into the picture. The second sat of rules primarily addresses
C++'srole in supporting design. The third addresses technicalities related to the form
of the language, and the fourth focuses on C++'s role as a language for low-level sys-
tems programming.

The formulation of the rules here has the benefit of hindsight, but the rules and
sentiments expressed dominated my thinking from before the completion of the first
C++ release in 1985, and - as described in the previous chapters - many of these rules
were part of the original conception of C with Classes.

42 Generd Rules

The most general and most important C++ rules have little to do with language-
technical issues. They are amost sociological in their focus on the community C++
serves. The nature of the C++ language is largely determined by my choice to serve
the current generation of systems programmers solving current problems on current
computer systems. Importantly, because the meaning and nature of current changes
with time, C++ had to evolve to meet the needs of its users; it could not be defined
once and for all.

General rules:

C++'s evolution must be driven by real problems.

Don't get involved in a sterile quest for perfection.

C++ must be useful now.

Every feature must have a reasonably obvious implementation.
Always provide atransition path.

C++ is alanguage, not a complete system.

Provide comprehensive support for each supported style.
Don't try to force people.

C++'s evolution must be driven by real problems: In computer science, as in
many other fields, we see too many people searching for a problem to apply their pet
solution to. | don't know any foolproof way of keeping fads from distorting my view
of what is important, but | am acutely aware that many of the language features pre-
sented to me as essential are infeasible within the framework of C++ and often irrele-
vant to real-world programmers.
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The right motivation for a change to C++ is for several independent programmers
to demonstrate how the language is insufficiently expressive for their projects. | pre-
fer input from non-research projects. Whenever possible, | involve rea users in the
effort to find and complete a solution. | read the programming language literature
avidly looking for solutions to such problems and aso for general techniques that
might help. However, | find the literature wholly unreliable on the subject of what is
a genuine problem. Theory itself is never sufficient justification for adding or remov-
ing afeature.

Don't get involved in a sterile quest for perfection: No programming language
is perfect, and none will ever be as long as problems and systems keep changing. Pol-
ishing a language for years trying to reach some notion of perfection smply deprives
programmers of benefits from the progress made thus far. It aso deprives the lan-
guage designer of genuine feedback. Without appropriate feedback, a language can
be evolved into irrelevance. Problems, computer systems, and - most importantly -
people differ radically between environments so that a "perfect fit" to some small
environment is amost certainly too specialized to thrive in the larger real world. On
the other hand, programmers spend most of their time modifying or interfacing to old
code. They need stability to get real work done. Once alanguage is in real use, radi-
cal changes are infeasible, and even small changes are difficult without harming users.
Conseguently, the necessary quest for significant improvement must rely on genuine
feedback and must be accompanied by a serious concern for compatibility, transition,
and education. As the language matures, one must increasingly prefer aternatives
based on tools, techniques, and libraries over language changes.

Not every problem needs to be solved by C++, and not every problem in C++ is
significant enough to warrant a solution. For example, C++ need not be extended to
cope directly with pattern matching or theorem proving, and the well-known C opera-
tor precedence pitfals (82.6.2) are better left alone or addressed through warning
messages.

C++ must be useful now: Most programming is relatively mundane, done on rel-
atively low-powered computers, running relatively dated operating systems and tools.
Most programmers have less forma training than they would have liked and most
have insufficient time to upgrade their knowledge. To serve these programmers, C++
must be useful to someone with average skills, using an average computer.

Though tempted at times, | had no real desire to abandon these people to gain the
freedom to adjust my designs to top-of-the-line systems and the tastes of computer
science researchers.

The meaning of this rule - like most of the others - changes with time and partly
as aresult of C++'s success. More powerful computers are now available, and more
programmers are now acquainted with the basic concepts and techniques that C++
relies on. Further, as people's ambitions and expectations grow, the problems faced
by programmers change. This implies that features requiring more computer resources
and more maturity from programmers can and must be considered. Exception hand-
ling (816) and run-time type identification (§14.2) are examples of this.

Every feature must have a reasonably obvious implementation: No feature
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should require complicated algorithms for correct or efficient implementation. Ide-
ally, obvious analysis and code-generation strategies should exist, and these should be
good enough for real use. If added thought can produce even better results, so much
the better. Most features were implemented, used experimentally, and revised before
being accepted. Where this pattern was not followed, as in the case of the template
instantiation mechanism (815.10), problems surfaced.

However, there are many more users than there are compiler writers, so where
there is areal tradeoff between compiler complexity and complexity of use, the reso-
[ution must favor the users. | have earned the right to this opinion through years of
compiler maintenance.

Always provide a transition path: C++ must grow gradually to serve its users
and to benefit from feedback. This implies that great care must be taken to ensure
that older code continues to work. When an incompatibility is unavoidable, great care
must be taken to help users update their programs. Similarly, there has to be a path
from the use of error-prone C-like techniques to a more effective use of C++.

The general strategy for eliminating an unsafe, error-prone, or smply awkward
language feature is first to provide a better alternative, then recommend that people
avoid the old feature or technique, and only years later - if at al - remove the offend-|
ing feature. This strategy can be effectively supported by warning messages from the
compilers. Often, it is not feasible to eliminate a feature or correct a mistake (the rea-
son is typically the need for C compatibility); the aternative is warnings (82.6.2).
Thus, a C++ implementation can be safer than it appears from the language definition.

C++ is a language, not a complete system: A programming environment has
many components. One approach has been to merge al parts into a single, "inte-
grated" system. Another approach has been to maintain the classical distinctions
between parts of a system such as compilers, linkers, language run-time support
libraries, 1/0 libraries, editors, file systems, databases, etc. C++ follows the latter
approach. Through libraries, calling conventions, etc., C++ adapts to the system con-
ventions guiding interoperability of language and tools on each system. This is key
for easy portability of implementations and - more importantly - the key to coopera-
tion between code written in different languages. This aso allows sharing of tools,
eases the cooperation between programmers with different preferences in program-
ming languages, and eases the use of many languages by an individual programmer.

C++ is designed to be one language among many. C++ enables tool development,
but does not mandate particular forms. The programmer retains freedom of choice. A
key idea is that C++ and its associated tools should "feel" right for a given system
rather than impose some particular view of what a system and an environment is.
This is especialy important for large systems and systems with unusual constraints.
Such systems are not usually well supported because "standard" systems tend to be
specialized to serve individuals or small groups doing fairly ''average” work.

Provide comprehensive support for each supported style: C++ must grow to
meet the needs of serious developers. Simplicity is essential, but it is considered rela-
tive to the complexity of the projects in which C++ is used. Maintainability and run-
time performance of systems written in C++ is considered more important than
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keeping the language definition short. This implies arelatively large language.

It also implies - as experience showed - that many hybrid styles of programming
must be supported. People don't just write classes that fit a narrowly defined abstract
data type or object-oriented style; they also - often for perfectly good reasons - write
classes that take on aspects of both. They also write programs in which different parts
use different styles to match needs and taste.

Conseguently, features must be designed to be used in combination. This leads to
a degree of orthogonality in the design of C++. The opportunity for "unusual" uses
is an important source of flexibility and has repeatedly allowed C++ to be used in
areas where a more restricted and narrowly focused language would have failed. For
example, the C++ rules for access protection, name lookup, virtual/non-
virtual binding, and type are orthogonal. This opens the possibility for a variety
of techniques relying on information hiding and derived classes. Some who would
prefer to see only afew narrowly defined styles of programming supported deem this
"hackery." On the other hand, orthogonality is not a first-order principle; it is
applied wherever it doesn't conflict with one of the rules and whenever it provides
some benefit without complicating implementations.

Having arelatively large language implies that some of the effort to manage com-

plexity moves from the understanding of libraries and individual programs to learning
the language and its basic design techniques. For most people, this change in empha-
sis, the adoption of new programming techniques, and the application of "advanced"
features must be gradual. Few can completely absorb the new techniques ''in one sit-
ting" or apply al of their new skills to their work at once (87.2). C++ is designed to
make such a gradual approach feasible and natural. The ideal is: What you don't
know won't hurt you. The static type system and compiler warning messages help,
i Don't try to force people: Programmers are smart people. They are engaged in
challenging tasks and need all the help they can get from a programming language as
well as from other supporting tools and techniques. Trying to seriously constrain pro-
grammers to do "only what is right" is inherently wrongheaded and will fail. Pro-
grammers will find a way around rules and restrictions they find unacceptable. The
language should support a range of reasonable design and programming styles rather
than try to force people into adopting a single notion.

This does not imply that all ways of programming are equally good or that C++
should try to support every kind of programming style. C++ was designed to directly
support styles of design relying on extensive static type checking, data abstraction,
and inheritance. However, moralizing over how to use the features is kept to a mini-
mum, language mechanisms are as far as possible kept policy free, and no feature is
added to or subtracted from C++ exclusively to prevent a coherent style of program-
ming.

| am well aware that not everyone appreciates choice and variety. However, peo-
ple who prefer a more restrictive environment can impose one through style rules in
C++ or choose a language designed to provide the programmer with a smaller set of
alternatives.

Many programmers particularly disiike being told that something might be an
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error when it happens not to be. Consequently, "potential errors' are not errors in
C++. For example, it is not an error to write declarations that will alow an ambigu-
ous use. The error is an ambiguous use, not the mere possibility of such an error. In
my experience, most "potential errors" never manifest themselves so to defer the
error message is to avoid giving it. Much convenience and flexibility result from such
deferrals.

4.3 Design Support Rules

The rules listed here relate primarily to C++'s role in supporting design based on
notions of data abstraction and object-oriented programming. That is, they are more
concerned with the language's role as a support for thinking and expression of high-
level ideas than its role as a ' 'high-level assembler” along the lines of C or Pascal.

Design support rules:
Support sound design notions.
Provide facilities for program organization.
Say what you mean.
All features must be affordable.
It is more important to alow a useful festure than to prevent every misuse.
Support composition of software from separately developed parts.

Support sound design notions: Each individual language feature must fit into an
overal pattern. That overall pattern must help answer questions of what abilities are
desirable. The language itself cannot provide that; the guiding pattern must come
from a different conceptual level. For C++, that level is provided by ideas of how pro-
grams can be designed.

My aim is to raise the level of abstraction in systems programming in away simi-
lar to what C did by replacing assembler as the mainstay of systems work. Ideas for
new features are considered in light of how they might enhance C++ as alanguage for
expressing designs. In particular, individual festures are considered in light of how
they can make the notion that a concept is represented by a class effective. Thisis the
key to C++'s support for data abstraction and object-oriented programming.

A programming language is not and should not be a complete design language. A
design language should be richer and less concerned with details than a language suit-
able for systems programming must be. However, the programming language should
support some notions of design as directly as possible to ease communication between
designers and programmers (who are often the same people ''wearing different hats™)
and to smplify tool building.

Viewing the programming language in terms of design techniques alows sug-
gested language features to be accepted or excluded based on their relationship to the
design styles supported. No language can support every style, and a language sup-
porting only one narrowly defined design philosophy will fail for lack of adaptability.
Enhancing C++ to support the continuum of design techniques that map into the
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"better C" / data abstraction / object-oriented programming spectrum helped avoid
the temptation to try to make C++ everything to all people while providing a constant
stimulus to improvements.

Provide facilities for program organization: Compared to C, C++ helps orga
nize programs to be easier to write, read, and maintain. | considered computation a
problem solved by C. Likejust about everybody else, | have ideas of how the expres-
son and statement part of C could be improved, but | decided to focus my efforts
elsewhere. Whenever a new kind of expression or statement has been suggested, it
has been evaluated based on whether it affected the structure of the program or merely
made the expression of some local computation easier. With few exceptions, such as
allowing declarations to appear where a variable is firs needed (83.11.5), the C
expressions and statements have been left unchanged.

Say what you mean: The fundamental problem with lower-level languages is the
gap between what people can express when they talk to each other and what they can
express directly in the programming language. The basic structure of a program dis-
appears in amess of bits, bytes, pointers, loops, etc.

The primary means of narrowing this semantic gap is to make a language more
declarative. Almost every facility provided by C++ hinges on making something
declarative and then exploiting the added structure in consistency checking, detection
of slly errors, and improved code generation.

Where a declarative structure cannot be employed, a more explicit notation can
often help. The alocation/deallocation operators (810.2) and the new cast syntax
(814.3) are examples. An early expression of the ideal of direct and explicit expres-
sion of intent was "to allow expression of al important things in the language itself
rather than in the comments or through macro hackery." This implies that the lan-
guage in general, and its type system in particular, must be more expressive and flexi-
ble than earlier general-purpose languages.

All features must be affordable: It is not enough to provide a user with a lan-
guage feature or recommend a technique for some problem. The solution offered
must also be affordable. Otherwise, the advice is almost an insult: "Rent an execu-
tive jet," may be avalid response to, ' 'What is the best way of getting to Memphis?"
but to al but millionaires, it is not a very helpful answer.

A feature was added to C++ only when there was no way of achieving similar
functionality at significantly lesser cost. My experience is that if programmers are
given the choice of doing something efficiently or elegantly, most will choose effi-
ciency unless there is an obvious mgjor reason not to. For example, inline functions
were provided to alow cost-free crossing of protection boundaries and to be a better-
behaved alternative to many uses of macros. The ided is of course for facilities to be
elegant and efficient. Where that is not feasible, the facility either isn't provided or -
if it is deemed essentia - it is provided efficiently.

It is more important to allow a useful feature than to prevent every misuse:
You can write bad programs in any language. It is important to minimize the chance
of accidental misuse of features, and much effort has been spent trying to ensure that
the default behavior of C++ constructs is either sensible or leads to compile-time
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errors. For example, by default al function argument types are checked - even across
separate compilation boundaries - and by default, al class members are private.
However, a systems programming language cannot prevent a determined programmer
from breaking the system so design effort is better expended providing fecilities for
writing good programs than preventing the inevitable bad ones. In the longer run,
programmers seem to learn. This is a variant of the old C "trust the programmer”
dogan. The various type checking and access control rules exist to alow a class pro-
vider to state clearly what is expected from users, to protect against accidents. Those
rules are not intended as protection against deliberate violation (§2.10).

Support composition of software from separately developed parts. Program-
mers need more support for complex applications than simple ones, more support for
large programs than small ones, and more support for applications under efficiency
congtraints than applications with ample resources. Much of the effort in the design
of C++ was spent addressing the first two of those observations under the constraints
of the third. As applications get larger and more complex, they must be composed out
of semi-independent parts to be manageable.

Anything that alows a component of a larger system to be developed indepen-
dently and then used without modification in a larger system serves this purpose.
Much of the evolution of C++ has been driven by that idea. Classes themselves are the
original such C++ feature, and abstract classes (813.2.2) explicitly support separation
between interfaces and implementations. In fact, classes can be used to express a con-
tinuum of coupling strategies [Stroustrup, 1990b]. Exceptions alow error handling to
be decoupled from a library (816.1), templates allow composition based on types
(815.3, 815.6, 8§15.8), namespaces solve the namespace pollution problem (§17.2),
and run-time type identification addresses the problem of what to do when the exact
type of an object has been "lost" by passing it through alibrary (814.2.1).

The notion that programmers need more support when developing larger systems
implies that efficiency mustn't be compromised by reliance on optimization tech-
niques that work best for small programs. Consequently, object layout can be deter-
mined given a single compilation unit in isolation, and virtual function calls can be
compiled into efficient code without relying on cross-compilation-unit optimizations.
This is true even when efficient means efficiently compared to C. Further optimiza-
tions are possible when information about a complete program is available. For
example, looking at a complete program and a call of a virtua function, one can - in
the absence of dynamic linking - sometimes determine the actual function called. In
that case, one can call replace the virtua function call with an ordinary function call
or even inline. C++ implementations that can do that exist. However, such optimiza
tions are not necessary for generating efficient code; they are simply an added benefit
when run-time efficiency is preferred to compile-time efficiency and dynamic linking
of new derived classes. When such global optimization is not deemed reasonable, a
virtual function call can till be optimized away when the virtual function is applied to
an object of known type; even Cfront Release 10 did that.

Support for larger systems is often discussed under the heading "support for
libraries" (88).
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4.4 Language-Technical Rules

The following rules address questions of how things are expressed in C++ rather than
questions of what can be expressed.

L anguage-technical rules:

No implicit violations of the static type system.

Provide as good support for user-defined types as for built-in types.
Locality is good.

Avoid order dependencies.

If in doubt, pick the variant of afeature that is easiest to teach.
Syntax matters (often in perverse ways).

Preprocessor usage should be eliminated.

No implicit violations of the static type system: Every object is created with a
specific type such as double, char*, or dial _buf f er. If an object isused in a
way that is inconsistent with its given type the type system has been violated. A lan-
guage where such violation can never happen is strongly typed. A language where
every such violation is detected at compile time is strongly statically typed.

C++ inherits features from C, such as unions, casts, and arrays, that make it impos-
sible to detect every violation at compiletime. Currently, C++ does not admit implicit
violation of the type system. That is, you need to explicitly use a union, cast, array,
an explicitly unchecked function argument, or explicitly unsafe C linkage to break the
system. Any use of the unsafe features can be made to cause a (compile time) warn-
ing. More importantly, C++ now possesses language features that make it more con-
venient and equally efficient to avoid the unsafe features than to use them. Examples
are derived classes (82.9), a standard array template (88.5), type-safe linkage (811.3),
and dynamically checked casts (814.2). Because of C compatibility requirements and
common practice, the path to this state of affairs has been long and hard; most pro-
grammers have yet to adopt the safer practices.

Wherever possible, checking is done at compile time. Wherever possible, things
that cannot be checked given only the information in a single compilation units are
checked at link time. Finally, run-time type information (814.2) and exceptions (816)
are provided to help the programmer cope with error conditions that a compiler and a
linker cannot catch. Where applicable, compile-time checking is cheaper and more
dependable, though.

Provide as good support for user-defined types as for built-in types: Since
user-defined types are intended to be central to C++ programs, they need as much sup-
port as possible from the language. Therefore, restrictions such as ''class objects can
be allocated only on the free store" were not acceptable. The need to provide genuine
local variables for arithmetic types such as complex led to support for value-
oriented types (concrete types) comparable to or even superior to the built-in types.

Locality is good: When writing a piece of code, one would prefer it to be sdf-
contained except where it needs a service from elsewhere. One would aso prefer
such services to be available without too much fuss and bother. Conversely, one
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would like to supply functions, classes, etc., to others without fear of interference
between implementation details and other people's code.

C is about as far from these ideals as one can get. Every globa function and vari-
able name is visible to the linker and will clash with other uses of the same name
unless explicitly declared static. Every name can be used as a function name with-
out previous declaration. As arelic of the days when the names of structure members
were global, the names of structures declared within structures are global. In addition,
the preprocessor's macro processing doesn't respect scope, so any sequence of charac-
ters in the program text just might be changed into something different if a change is
made to a header file or a compiler option (818.1). All this adds up to very powerful
suff if you want to affect the meaning of some apparently local code or want to affect
the rest of the world by asmall *'local™ change. On average, | consider this most dis-
ruptive to my comprehension of complex software and to maintenance. Conse-
quently, | set out to provide better insulation against disruptions from "elsewhere"
and better control over what is "exported” from my code.

Classes provide the first and most important mechanisms for localizing code and
channeling access through a well-defined interface. Nested classes (83.12, §13.5) and
namespaces (817) extend notions of local scope and explicit granting of access fur-
ther. In each case, the amount of global information in a system decreases signifi-
cantly.

Access control localizes access without imposing run-time or space overheads
needed for complete decoupling (82.10). Abstract classes alow a greater degree of
decoupling at minimal cost (813.2).

Within classes and namespaces, it is important that people can separate the decla-
rations from the implementations, thus making it easier to see what a class does with-
out having to skip past function bodies specifying how it is done. Inline functions in
class declarations are alowed so that locality can be achieved when this separation is
not helpful.

Finally, code is easier to understand and manipulate if significant chunks fit on a
screen. C's traditional terseness helps here, and the C++ rules that allow new vari-
ables to be introduced where they are first needed (83.11.5) is a further step in this
direction.

Avoid order dependencies: An order dependence is an opportunity for confusion
and for errors when code is reorganized. People are aware that statements are exe-
cuted in a definite order, but dependencies between globa declarations and between
class member declarations are often overlooked. The overloading rules (811.2) and
the rules for the use of base classes (812.2) were specificaly crafted to avoid order
dependencies. Ideally, it should be an error if the reversal of the order of two declara-
tions could cause a different meaning. That is the rule for class members (86.3.1), but
it cannot be imposed for globa declarations. The C preprocessor can wresk havoc by
introducing unexpected and ill-behaved dependencies through macro processing
(818.2).

| sometime express my desire to avoid subtle resolutions by saying, ''It is not the
compiler'sjob to make up your mind for you." In other words, a compile-time error
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is more acceptable than an obscure resolution. The ambiguity rules for multiple
inheritance are a good example of this (812.2). The ambiguity rules for overloaded
functions are an example of how hard this is to achieve under constraints of compati-
bility and flexibility (811.2.2).

If in doubt, pick the variant of a feature that is easiest to teach: Thisis a sec-
ondary rule for choosing between alternatives. It is tricky to apply because it can be
an argument for logical beauty and also for sticking to the familiar. Writing tutorials
and reference manual descriptions to see how easy they are for people to understand is
a practical application of this rule. One intent is to ease the task for educators and
support personnel. It is important to remember that programmers are not stupid; sim-
plicity mustn't be achieved at the expense of important functionality.

Syntax matters (often in perverse ways): It is essential to have the type system
coherent and in genera to have the semantics of the language clean and well defined.
Syntax is a secondary issue, and it appears that programmers can learn to love abso-
lutely any syntax.

However, syntax is what people see. Syntax is the language's primary user inter-
face. People are devoted to certain forms of syntax and express their opinions with
curious fanaticism. | see no hope of changing this or introducing new semantic
notions and design ideas in the face of emotional opposition to a particular syntax.
Conseguently, the C++ syntax is crafted with care to avoid offending programmers
prejudices, while aiming to make the syntax more rational and regular over time. My
aim is to fade out warts such as implicit i nt (82.8.1) and old-style casts (§14.3.1),
while minimizing the use of the more complicated forms of the declarator syntax
(82.8.1).

My experience is that people are addicted to keywords for introducing concepts to
the point where a concept that doesn't have its own keyword is surprisingly hard to
teach. This effect is more important and deep-rooted than people's vocally expressed
dislike for new keywords. Given a choice and time to consider, people invariably
choose the new keyword over a clever workaround.

| try to make significant operations highly visible. For example, one significant
problem with old-style casts is that they are almost invisible. In addition, | prefer to
make semantically ugly operations, such as ill-behaved casts, syntactically ugly to
match (814.3.3). In genera, verbosity is avoided.

Preprocessor usage should be eliminated: Without the C preprocessor, C itself
and later C++ would have been dtillborn. Without Cpp, they smply weren't suffi-
ciently expressive and flexible to handle every task needed in significant projects. On
the other hand, the ugly and low-level semantics of Cpp are the primary reason more
advanced and elegant C programming environments have been too difficult and
expensive to build and use.

Conseguently, aternatives that fit with the syntax and semantics of C++ must be
found for every essentiadl Cpp feature. That done, we'll get cheaper and much
improved C++ programming environments. Along the way, we'll root out the sources
of many difficult bugs. Templates (815), inline functions (82.4.1), const (83.8), and
namespaces (817) are steps on the way.
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45 Low-Level Programming Support Rules

Naturally, the rules mentioned above apply to essentially all language features. The
rules below also affect C++ as alanguage for expressing high-level designs.

L ow-level programming support rules:
Use traditional (dumb) linkers.
No gratuitous incompatibilities with C.
Leave no room for alower-level language below C++ (except assembler).
What you don't use, you don't pay for (zero-overhead rule).
If in doubt, provide means for manual control.

Use traditional (dumb) linkers: Ease of porting and ease of cooperation with
software written in other languages were early goals. Insisting that C++ should be
implementable with traditional linkers ensures that. Having to manage with linker
technology that dates from early Fortran days can be painful, though. Severa features
of C++, notably type-safe linkage (811.3) and templates (8§15), can be implemented
using traditional linkers, but they can be implemented better with more linker support.
A secondary aim has been for C++ to provide a stimulus to improved linker design.

Using traditional linkers makes it relatively easy to maintain link compatibility
with C. This is essential for smooth use of operating system facilities, for using C,
Fortran, etc., libraries, and for writing code to be used as libraries from other lan-
guages. Using traditional linkers is also essential for writing code intended to be part
of the lower levels of a system, such as device drivers.

No gratuitous incompatibilities with C: C is the most successful systems pro-
gramming language ever. Hundreds of thousands of programmers know C well, bil-
lions of lines of C exist, and atools and services industry focused on C exists. C++is
based on C. The question is, "How closely should the C++ definition match that of
C?" C++ doesn't aim at 100% compatibility with C because that would have com-
promised the aims of type safety and support for design. However, where these aims
are not interfered with incompatibilities are avoided - even at the cost of inelegance.
In most cases, C incompatibilities have been accepted only when a C rule left a gap-
ing hole in the type system.

Over the years, C++'s greatest strength and its greatest weakness has been its C
compatibility. This came as no surprise. The degree of C compatibility will be a
major issue in the future. Over the coming years, C compatibility will become less
and less of an advantage and more and more of a liability. A path of evolution must
be provided (89).

Leave no room for a lower-level language below C++ (except assembler): If a
language aims at being truly high level - that is, it completely protects its program-
mers from the ugly and boring details of the underlying computer - it must relinquish
the dirtier tasks of systems programming to some other language. Typicaly, that lan-
guage has been C. Typicaly, C has then replaced the higher-level language in most
areas where control or speed were deemed essential. Often, this has led to a system
programmed completely in C or to one that could only be mastered by someone who
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knows both languages well. In the latter case, a programmer is too often left with a
difficult choice of which level of programming is most suitable for a given task and
has to keep the primitives and principle of both in mind. C++ tried another path by
providing low-level features, abstraction mechanisms, and support for creating hybrid
systems out of both.

To remain aviable systems programming language, C++ must maintain C's ability
to access hardware directly, to control data structure layout, and to have primitive
operation and data types that map on to hardware in a one-to-one fashion. The alter-
native is to use C or assembler. The language design task is to isolate the low-level
features and render them unnecessary for code that doesn't deal directly with system
details. The aim is to protect programmers against accidental misuse without impos-
ing undue burdens.

What you don't use, you don't pay for (zero-overhead rule): Large languages
have a well-earned reputation for generating large and dow code. The usual reason is
that the overhead of supporting supposedly advanced features is distributed over all
the features in the language. For example, al objects are large to hold information
needed for various kinds of housekeeping, indirect access is imposed on al data
because some features are best managed through indirections, or control structures are
elaborated to accommodate "advanced control abstractions.” This kind of "dis-
tributed fat" was deemed unsuitable for C++. Accepting it would leave room for a
lower-level language below C++ and make C a better choice than C++ for low-level
and high-performance work.

This rule has repeatedly been crucial for C++ design decisions. Virtual functions
(83.5), multiple inheritance (812.4.2), run-time type identification (814.2.2.2), excep-
tion handling, and templates are al features that owe part of their design to this rule.
In each case, the feature was accepted only after | convinced myself that an imple-
mentation that obeyed the zero-overhead rule could be constructed. Naturally, an
implementer can decide to make a tradeoff between the zero-overhead rule and some
other desirable property of a system, but this has to be done very carefully. Many
programmers react harshly and emotionally to distributed fat.

Of dl the rules, the zero-overhead rule is probably the one that has the sharpest
edge when it comes to rejecting a suggested feature.

If in doubt, provide means for manual control: | am reluctant to trust
"advanced technology" and particularly loath to assume that something really
sophisticated will be universally and cheaply available. Inline functions are a good
example of this (§2.4.1). Template instantiation is an example where | should have
been more careful and later had to add a mechanism for explicit control (815.10). The
detailed control of memory management is an example of where important gains were
made through manua control, yet only time will tell if these gains were made at the
expense of getting in the way of automated techniques (8 10.7).
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46 A Fina Word

All of these rules must be taken into account for a mgor language feature. Leaving
one out would most likely lead to an imbalance that could hurt a group of users. Sim-
ilarly, letting one rule dominate at the expense of others would cause similar prob-
lems.

| have tried to keep my rules positive and prescriptive rather than building up alist
of prohibitions. This makes it inherently more difficult to exclude new ideas. My
view of C++ as a language for production software and a focus on facilities that affect
program structure counteracts the natural tendency to make minor adjustments.

A more specific and detailed list of issues considered for a language feature is the
checklist suggested by the ANSI/ISO committee's working group for extensions
(86.4.1).



5

Chronology 1985-1993

Remember, things take time.
—PietHein

Post-Release-1.0 chronology — Release 2.0 — 2.0 feature overview —
The Annotated C+ + Reference Manual and informa standardization —
ARM feature overview — ANSI and 1SO standardization — standard fea
ture overview.

5.1 Introduction

Part 11 presents features added to complete C++. The presentation is organized around
language features rather than chronologically. This chapter provides the chronology.

The reason to depart from the chronological organization is that the actual time
order was not important to the final definition of C++. | knew in general terms where
the language was going, what problems needed to be addressed, and what kind of fea-
tures might be needed to address them. However, there was no way | could just St
down and do it al in one mgor revision of the language. That would have taken too
long and would have left me working in a vacuum without essential feedback. Conse-
quently, extensions were developed and added to the language piecemeal. The actual
order was of crucial importance to the users at the time and essential for keeping the
language coherent at al times. It was, however, not of major importance to the final
shape of C++. Presenting the extensions in chronological order would therefore
obscure the logical structure of the language.
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This chapter presents the work leading to Release 2.0 of Cfront, the work leading

to The Annotated C++ Reference Manual, and the standards effort:

1986-1989:  Release 2.0 rounded off C++ with features such as abstract classes,
type-safe linkage, and multiple inheritance, but didn't add anything
radically new.

1988-1990:  The Annotated C++ Reference Manual added templates and excep-
tion handling, and in doing so presented a mgor chalenge to
implementers and opened the way to radical changes in the way
C++ programs could be written.

1989-1993:  The standards effort added namespaces, run-time type identifica-
tion, and many minor features to the C++ programmers tool set.

In al three cases, significant work was done to make the definition of C++ more pre-
cise and to clean up the language by minor changes. From my perspective, it was al
one continuing effort.

52 Rdeae20

By mid-1986, the course for C++ was set for all who cared to see. The key design
decisions were made. The direction of the future evolution was set with the aim for
parameterized types, multiple inheritance, and exception handling. Much experimen-
tation and adjustment based on experience was needed, but the glory days were over.
C++ had never been silly putty, but there was now no rea possibility for radical
change. For good and bad, what was done was done. What was left was an incredible
amount of solid work. At this point, C++ had about 2,000 users worldwide.

This was the point where the plan - as originaly conceived by Steve Johnson and
me - was for a development and support organization to take over the day-to-day
work on tools (primarily Cfront), thus freeing me to work on the new features and the
libraries that were expected to depend on them. This was also the point where |
expected that first AT&T and then others to start building compilers and other tools
that eventually would make Cfront redundant.

Actually, they had aready started, but the good plan was soon derailed due to
development management indecisiveness, ineptness, and lack of focus. A project to
develop a brand new C++ compiler diverted attention and resources from Cfront
maintenance and development. A plan to ship a Release 1.3 in early 1988 completely
fell through the cracks. The net effect was that we had to wait until June 1989 for
Release 2.0 and that even though 2.0 was dgnificantly better than Release 12 in
amost al ways, 2.0 did not provide the language features outlined in the "whatis
paper" (83.15) and - partly as a conseguence - a significantly improved and extended
library wasn't part of it. Shipping such a library would have been feasible because
much of what became the USLT Standard Components library had by then been in
internal AT&T production use for some time. However, my wish for direct support

1 USL darted out as an AT& T organization supporting and distributing Unix and related tools; later, it be-
came a separate company called Unix System Laboratories; later it was bought by Novell.
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for templates till blinded me to alternatives. There was aso a misguided belief
among some development managers that the library might become both a standard
and a significant source of income.

Release 2.0 was the work of a group consisting of Andrew Koenig, Barbara Moo,
Stan Lippman, Pat Philip, and me. Barbara coordinated; Pat integrated; Stan and |
coded; Andy and | evaluated bug reports and discussed language details; Andy and
Barbara did the testing. In all, | implemented al of the new features and something
like 80% of the bug fixes for 2.0. In addition, | wrote most of the documentation. As
ever, language design issues and the maintenance of the reference manual were my
responsibility. Barbara Moo and Stan Lippman became the nucleus of the team that
eventually produced Release 2.1 and 3.0.

Many of the people who influenced C with Classes and the origina C++ continued
to help with the evolution in various ways. Phil Brown, Tom Cargill, Jim Coplien,
Steve Dewhurst, Keith Gorlen, Laura Eaves, Bob Kelley, Brian Kernighan, Andy
Koenig, Archie Lachner, Stan Lippman, Larry Mayka, Doug Mcllroy, Pat Philip,
Dave Prosser, Peggy Quinn, Roger Scott, Jerry Schwarz, Jonathan Shopiro, and Kathy
Stark were explicitly acknowledged in [Stroustrup,1989b]. The most active in lan-
guage discussion during this period were Doug Mcllroy, Andy Koenig, Jonathan Sho-
piro, and .

Stability of the language definition and its implementation was considered essen-
tial [Stroustrup, 1987¢]:

"1t is emphasized that these language modifications are extensions, C++ has been
and will remain a stable language suitable for long term software devel opment."
And so was C++'s role as a general-purpose language for industrial use

[Stroustrup, 1987c]:
"Portability of at least some C++ implementations is a key design goal. Conse-
quently, extensions that would add significantly to the porting time or to the
demands on resources for a C++ compiler have been avoided. This ideal of lan-
guage evolution can be contrasted with plausible alternative directions such as
making programming convenient
- & the expense of efficiency or structure;
- for novices at the expense of generality;
- in a gpecific application area by adding special purpose features to the lan-
guage;
- by adding language features to increase integration into a specific C++
environment."
Release 2.0 was a magjor improvement, but not by providing anything radically new.
At the time, | liked to explain that "all of the 2.0 features - including multiple inheri-
tance - are smply removal of restrictions that we had come to see as too constraining;
so we removed them." This was an exaggeration, but a prudent counter to the general
tendency to overrate every new feature. From a language design point of view, the
most important aspect of Release 2.0 was that it increased the generality of the indi-
vidual language features and improved their integration into the language. From a
user's point of view, | suspect that the most important aspects of Release 2.0 were the
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more solid implementation and the improved support.

5.2.1 Feature Overview

The main features of 2.0 were first presented in [Stroustrup, 1987c] and summarized in
the revised version of that paper [Stroustrup, 1989b] that accompanied 2.0 as part of
its documentation:

[1] Multiple inheritance (812.1)

[2] Type-safelinkage (811.3)

[3] Better resolution of overloaded functions (811.2)

[4 Recursive definition of assignment and initialization (8 11.4.4)

[5] Better facilities for user-defined memory management (8 10.2, § 10.4)

[6] Abstract classes (§13.2)

[7] Static member functions (§13.4)

[8] const member functions (813.3)

[99 protected members (first provided in Release 1.2) (813.9)

[10] Generalized initializers (83.11.4)

[11] Base and member initializers (812.9)

[12] Overloading of operator -> (§11.5.4)

[13] Pointers to members (first provided in Release 1.2) (§13.11)

Most of these extensions and refinements represented experience gained with C++ and
couldn't have been added earlier without more foresight than | possessed. Naturally,
integrating these features involved significant work, but it was most unfortunate that
this was alowed to take priority over the completion of the language as outlined in
the "whatis" paper (83.15).

Most features enhanced the safety of the language in some way or other. Cfront
2.0 checked the consistency of function types across separate compilation units
(type-safe linkage), made the overload resolution rules order-independent, and
ensured that more calls were considered ambiguous. The notion of const was made
more comprehensive, pointers to members closed a loophole in the type system, and
explicit class-specific memory alocation and deallocation operations were provided
to make the error-prone "assignment to t hi s" technique (83.9) redundant.

Of these features, [1], [3], [4], [5], [9], [10], [11], [12], and [13] were in use within
Bell Labs at the time of my 1987 USENIX presentation (87.1.2).

5.3 The Annotated Reference Manud

Sometime in 1988 it became clear that C++ would eventually have to be standardized
[Stroustrup,1989]. There were now a handful of independent implementations being
produced. Clearly, an effort had to be made to write a more precise and comprehen-
sive definition of the language. Further, it would be necessary to gain wide accep-
tance for that definition. At firgt, formal standardization wasn't considered an option.
Many people involved with C++ considered - and till consider - standardization
before genuine experience has been gained abhorrent. However, making an improved
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reference manual wasn't something that could be done by one person (me) in private.
Input and feedback from the C++ community was needed. Thus | came upon the idea
of rewriting the C++ reference manual and circulating its draft among important and
insightful members of the C++ community worldwide.

At about the same time, the part of AT&T that sold C++ commercialy (USL)
wanted a new and improved C++ reference manual and gave one of its employees,
Margaret Ellis, the task of writing it. It seemed only reasonable to combine the efforts
and produce a single, externally reviewed reference manual. It also seemed obvious
to me that publishing this manual with some additional information would help the
acceptance of the new definition and make C++ more widely understood. Thus, The
Annotated C++ Reference Manual was written [ARM]:

"to provide a firm basis for the further evolution of C++ ... [and] to serve as a
starting point for the forma standardization of C++. ... The C++ reference manual
alone provides a complete definition of C++, but the terse reference manual style
leaves many reasonable questions unanswered. Discussions of what is not in the
language, why certain features are defined as they are, and how one might imple-
ment some particular feature have no place in areference manual but are neverthe-
less of interest to most users. Such discussions are presented as annotations and in
the commentary sections.

The commentary also helps the reader appreciate the relationships among dif-
ferent parts of the language and emphasizes points and implications that might
have been overlooked in the reference manual itself. Examples and comparisons
with C aso make this book more approachable than the bare reference manual ™

After some minor squabbling with the product people it was agreed that we'd write
the ARM (as The Annotated C+ + Reference Manual is commonly called) describing
the whole of C++, that is, with templates and exception handling, rather than as a
manual for the subset implemented by the most recent AT&T release. This was
important because it clearly established the language itself as different from any one
implementation of it. This principle had been present from the very beginning, but it
needs to be restated often because users, implementers, and salesmen seem to have
difficulty remembering it.

Of the ARM, | wrote every word of the reference manual proper except the section
on the preprocessor (818) that Margaret Ellis adapted from the ANSI C Standard.
The annotations and the commentary sections werejointly written and partly based on
my earlier papers [Stroustrup,1984b,1987,1988,1988b,1989b].

The reference manual proper of the ARM was reviewed by about a hundred peo-
ple from two dozen organizations. Most are named in the acknowledgment section of
the ARM. In addition, many contributed to the whole of the ARM. The contributions
of Brian Kernighan, Andrew Koenig, and Doug Mcllroy were specifically noted. The
reference manual proper from the ARM was accepted as the basis for the ANSI stan-
dardization of C++ in March 1990.

The ARM doesn't explain the techniques that the language features support: "this
book does not attempt to teach C++ programming; it explains what the language is -
not how to use it [ARM]." That job was left for the second edition of The C++
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Programming Language [2nd]. Unfortunately, some people discard the advice. The
result is often a view of C++ as a mere collection of obscure details and a consequen-
tial inability to write elegant and maintainable C++ code; see 8§7.2.

5.3.1 Feature Overview

The ARM presented a few minor features that were not implemented until Release 2.1
from AT&T and other C++ compiler vendors. The most obvious of these were nested
classes. | was strongly encouraged to revert to the original definition of nested class

scopes by comments from external reviewers of the reference manua. | aso
despaired over ever making the scope rules of C++ coherent while the C rule was in
place (§2.8.1).

The major new features presented in the ARM were templates (815) and exception
handling (816). In addition, the ARM allows people to overload prefix and postfix
increment (++) independently (811.5.3).

To match ANSI C, initidization of local static arrays was allowed.

To match ANSI C, the volatile modifier was introduced to help optimizer
implementers. | am not at al sure that the syntactic parallel with const is warranted
by semantic similarities. However, | never had strong feelings about vol atil e and
See no reason to try to improve on the ANSI C committee's decisions in this area.

To sum up, the features presented in the ARM were:

- The 2.0 features (85.2.1)

- Templates (815)

- Exceptions (816)

Nested classes (813.5)
Separate overloading of prefix and suffix ++ and --(811.5.3)

- volatile

- Local static arrays
The ARM features, excluding exceptions, first became widely available in Release 3.0
of Cfront in September 1991. The complete set of ARM features were firs made
available in the DEC and IBM C++ compilersin early 1992.

54 ANS and ISO Standardization

From 1990 onward, the ANSI/ISO C++ standards committee has been the primary
forum for the effort to complete C++.

The initiative to forma (ANSI) standardization of C++ was taken by Hewlett-
Packard in conjunction with AT&T, DEC, and IBM. Larry Rosier from Hewlett-
Packard was important in thisinitiative. In particular, Larry approached me sometime
near the end of 1988, and we had a discussion about the need for formal standardiza-
tion. The key problem was one of timing. Larry presented the case for urgency on
behalf of maor users, and | presented the case for delay to alow for further experi-
mentation and experience before standardization. After weighing the multitude of
nebulous technical and commercial issues, we agreed that there was a window of
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about a year during which formal standardization had to begin for us to have a fair
chance of success. As| remember it, the first technical meeting of the ANSI commit-
tee took place three days before our one-year window opened (March 1990).

The proposal for ANSI standardization was written by Dmitry Lenkov [Len-
kov,1989] from Hewlett-Packard. Dmitry's proposal cites severa reasons for imme-
diate standardization of C++:

- C++ is going through a much faster public, acceptance than most other lan-

guages. /

- Déday ... will lead to dialects.

- C++ requires a careful and detailed definition providing full semantics ... for
each language feature.

- C++ lacks some important features ... [including] exception handling, aspects
of multiple inheritance, features supporting parametric polymorphism, and
standard libraries.

The proposal aso stressed the need for compatibility with ANSI C. The organiza-
tional meeting of the ANSI C++ committee, X3J16, took place in December 1989 in
Washington, DC, and was attended by about 40 people, including people who took
part in the C standardization, people who by now were "old-time C++ programmers,"
and others. Dmitry Lenkov became its chairman, and Jonathan Shopiro became its
editor.

The first technical meeting was hosted by AT&T in Somerset, New Jersey, in
March 1990. AT&T gained that honor not because of any judgement about the
company's contribution to C++, but because we (the members of X3J16 present at the
Washington, DC meeting) decided to schedule the first years' meetings based on the
weather. Thus, Microsoft hosted the second meeting in Seattle in July, and Hewlett-
Packard hosted the third meeting in Palo Alto in November. This way, we had splen-
did weather for al three meetings and defused jockeying for status among the corpo-
rations represented.

The committee now has more than 250 members out of which something like 70
turn up at meetings. The original aim of the committee was a draft standard for public
review in late 1993 or early 1994 with the hope of an officid standard about two years
later. This was an ambitious schedule for the standardization of a general-purpose
programming language. To compare, the standardization of C took seven years. The
current schedule, which | think we have a good chance of meeting, calls for delivery
of a draft standard for public review in September of 1994.

Naturally, standardization of C++ isn't just an American concern. From the start,
representatives from other countries attended the ANSI C++ meetings. In Lund, Swe-
den, in June 1991 the 1SO C++ committee WG21 was convened, and the two C++
standards committees decided to hold joint meetings - starting immediately in Lund.
Representatives from Canada, Denmark, France, Japan, Sweden, the UK, and USA
were present. Notably, the vast mgjority of these national representatives were actu-
aly long-time C++ programmers.

The C++ committee had a difficult charter:

- The definition of the language must be precise and comprehensive.
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- C/C++ compatibility had to be addressed.

- Extensions beyond current C++ practice had to be considered.

- Libraries had to be considered.

On top of that, the C++ community was aready very diverse and totally unorganized
so that the standards committee naturally became an important focal point of the com-
munity. In the short run, that is actually the most important role for the committee:

'"The C++ committee is a place where compiler writers, tools writers, their friends

and representatives can meet and discuss language definition and - as far as com-

mercial rivaries alow - implementation issues. Thus, the C++ committee has
already served the C++ community by helping the implementations to become
more similar (more "correct") by providing a forum where issues can be aired.

The alternative is a compiler writer alone or together with a few friends finding

questions that they see no answer to in the ARM and having to make a guess.

Maybe they would mail me - many do - but | can't cope with every problem that

arises and some people do fed that dealing with an individual on such issues isn't

quite proper. Lack of communication inevitably leads to dialects. The committee
counteracts such trends. | don't see how someone who is not directly or indirectly
represented on the committee could currently hope to build a tool that was in line
with the assumptions made by the maor players in the C++ market

[Stroustrup,1992b]."

Standardization isn't easy. There are people on the committee who are there to pre-
serve status quo, there are people with an idea of status quo that makes them want to
turn the clock back several years, there are people who want to make a clean break
from the past and design a completely new language, there are people who care only
about a single issue, there are people who care only about a single class of systems,
there are people whose votes are tied by their employers, there are people who repre-
sent only themselves, there are people with a primarily theoretical view of program-
ming and programming languages, there are people who want a standard now! even if
it means some details left unresolved, there are people who want nothing short of a
perfect definition, there are people who come thinking that C++ is a brand new lan-
guage with hardly any users, there are people who represent users with many millions
of lines of code built over a decade, etc. Under the rules of standardization, we dll
have to more or less agree. We have to reach "consensus” (usually defined as alarge
voting majority). These are reasonable rules - and even if they were not, they would
still be the national and international rules the committee would have to follow. All
the interests are legitimate and having a majority squelch significant minority interests
would yield a standard that was useful only to an unnecessarily narrowly defined user
community. Thus, every member of the committee must learn to respect points of
view that seem alien and learn to compromise. That is actualy very much in the spirit
of C++.

C compatibility was the first mgjor controversial issue we had to face. After some
occasionally heated debate, it was decided that 100% C/C++ compatibility wasn't an
option. Neither was significantly decreasing C compatibility. C++ is a separate lan-
guage and not a strict superset of ANSI C and can't be changed to be such a superset
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without seriously weakening the guarantees provided by the C++ type system - and
without breaking millions of lines of C++ code. Similarly, any significant decrease in
C compatibility would break code, complicate the creation and maintenance of mixed
C and C++ systems, and complicate a transition from C to C++. This decision, often
referred to as "As close to C as possible - but no closer" after a paper written by
Andrew Koenig and me [Koenig,1989], is the same conclusion that has been reached
over and over again by individuals and groups considering C++ and the direction of
its evolution (83.12). Working out all the details of "As close to C as possible - but
no closer" after the independent changes C++ and ANSI C made to the original C
manual takes a major part of the standards committee's effort. Thomas Plum has
been a mgor contributor to this effort.

5.4.1 Feature Overview

The features provided by C++ &fter the November 1993 meeting in San Jose specified
by the standard committee's working paper can be summarized as:

- Features specified in the ARM (85.3)

- European character set representation of C++ (86.5.3.1)

- Relaxing rule for return types for overriding functions (813.7)

- Run-time type identification (814.2)

- Overloading based on enumerations (811.7.1)

- User-defined allocation and deallocation operators for arrays (8 10.3)

- Forward declaration of nested classes (813.5)

- Namespaces (817)

- Mutable (83.8)

- New casts(§ 14.3)

- A Boolean type (811.7.2)

- Explicit template instantiation (815.10.4)

- Explicit template argument specification in template function cals (815.6.2)
For more details, see §6.4.2.






6

Standardization

Don't you try to outweird me,
| get stranger things than you
free with my breakfast cereal.

- Zaphod Beeblebrox

What is a standard? — aims of the C++ standards effort — how does the
committee operate? — who is on the committee? — language clarifications
— name lookup rules — lifetime of temporaries — criteria for language
extension — list of proposed extensions — keyword arguments — an
exponentiation operator — restricted pointers — character sets.

6.1 What isa Standard?

There is much confusion in the minds of programmers about what a standard is and
what it ought to be. One ideal for a standard is to completely specify exactly which
programs are legal and exactly what the meaning of every such programis. For C and
C++ at least, that is not the whole story. In fact, it can't and shouldn't be the ideal for
languages designed to exploit the diverse world of hardware architectures and gad-
gets. For such languages, it is essential to have some behavior implementation-
dependent. Thus, a standard is often described as ''a contract between the program-
mer and the implementer.” It describes not only what is "legal" source text, but also
what a programmer can rely on in generad and what behavior is implementation-
dependent. For example, in C and C++ one can declare variables of type int, but the
standard doesn't specify how large an int is, only that it has at least 16 bits.

It is possible to have long and somewhat learned debates about what the standard
really is and what terminology can best be employed to express it. However, the key
points are to sharply distinguish what is and what is not a valid program, and further
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to specify what behavior should be the same in al implementations and what is
implementation-dependent. Exactly how those distinctions are drawn is important,
but not very interesting to practical programmers. Most committee members focus on
the more language-technical aspects of standardization so the main burden of tackling
the thorny issues of what the standard standardizes falls on the committee's project
editor. Fortunately, our origina project editor Jonathan Shopiro has an interest in
such matters. Jonathan has now retired as editor in favor of Andrew Koenig, but
Jonathan is gtill a member of the committee.

Another interesting (that is, very difficult) question is to which extent an imple-
mentation with features not specified in the standard is acceptable. It seems unreason-
able to ban al such extensions. After all, some extensions are necessary to important
sub-sections of the C++ community. For example, some machines have hardware that
supports specific concurrency mechanisms, special addressing constraints, or special
vector hardware. We can't burden every C++ user with features to support all these
incompatible special-purpose extensions. They will be incompatible and will often
impose a cost even on non-users. However, it would be unfortunate to discourage
implementers serving such communities from trying to be perfectly conforming
except for their essential extensions. On the other hand, | was once presented with an
"extension" that allowed access to private members of a class from every function in
the program; that is, the implementer had not bothered to implement access control. |
didn't consider that a reasonable extension. Wordsmithing the standard to alow the
former and not the latter is anontrivial task.

An important point is to ensure that nonstandard extensions are detectable; other-
wise, a programmer might wake up some morning and find significant code depen-
dent on a supplier's unique extensions and thus without the option to change suppliers
with reasonable ease. As a naive student, | remember being surprised and pleased to
find that the Fortran on our university mainframe was an "extended Fortran" with
some neat features. My surprise turned to dismay when | realized that this implied
that my programs would be useless except on CDC6000 series machines.

Thus, 100% portability of standards-conforming programs is not in general an
achievable or desirable ideal for C++. A program that conforms to a standard is not
necessarily 100% portable because it may display implementation-dependent behav-
ior. Actually, most do. For example, aperfectly legal C or C++ program may change
its meaning if it happens to depend on the results of the built-in remainder operator %
applied to a negative number.

Further, real programs tend to have dependencies on libraries providing services
not offered on every system. For example, a Microsoft Windows program is unlikely
to run unchanged under X, and a program using the Borland foundation classes will
not trivialy be ported to run under MacApp. Portability of real programs comes from
design that encapsulates implementation and environment dependencies, not just from
adherence to afew simple rules in a standards document.

Knowing what a standard doesn't guarantee is at least as important as knowing
what it does promise.
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6.1.1 Implementation Details

Every week, there seems to be a new request for standardizing things like the virtual
table layout, the type-safe linkage name encoding scheme, or the debugger. However,
these are quality-of-implementation issues or implementation details that are beyond
the scope of the standard. Users would like libraries compiled with one compiler to
work with code compiled with another, would like binaries to be transferable from
one machine architecture to another, and would like debuggers to be independent of
the implementation used to compile the code being examined.

However, standardization of instruction sets, operating-system interfaces, debug-
ger formats, calling sequences, and object layouts is far beyond the ability of the stan-
dards group for a programming language that is merely one little cog in a much bigger
system. Such universal standardization probably isn't even desirable because it would
gtifle progress in machine architectures and operating systems. If a user needs total
independence from hardware the system/environment must be built as an interpreter
with its own standard environment for applications. That approach has its own prob-
lems; in particular, specialized hardware becomes hard to exploit and local style
guides cannot be followed. If those problems are overcome by interfacing to code
written in another language that allows nonportable code, such as C++, the problem
recurs.

For a language suitable for serious systems work, we must live with the fact that
every now and again a naive user posts a message to the net: "I moved my object
code from my Mac to my SPARC and now it won't work." Like portability, interop-
erability is a matter of design and understanding of the constraints imposed by the
environments. | often meet C programmers who are unaware that code compiled with
two different C compilers for the same system is not guaranteed to link and in fact is
unlikely to do so - yet express horror that C++ doesn't guarantee such interoperabil-
ity. Asusual, we have amgjor task in educating users.

6.1.2 Reality Check

In addition to the many forma constraints on a standards committee, there is an infor-
mal and practical one: Many standards are smply ignored by their intended users.
For example, the Pascal and Pascal2 standards are almost completely forgotten. For
most Pascal programmers, "Pascal” means Borland's greatly extended Pascal dialect.
The language defined by the Pascal standard didn't provide features users considered
essential and the Pascal2 standard didn't appear until a different informa "industry
standard" had established itsdlf. Another cautionary observation is that on UNIX
most work is still done in K&R C; ANSI C is struggling in that community. The rea
son seems to be that some users don't see the technical benefits of ANSI/ISO C com-
pared to K&R C outweighing the short-term costs of a transition. Even an unchal-
lenged standard can be slow finding its way into use. To become accepted, a standard
must be timely and relevant to users' needs. In my opinion, delivering a good stan-
dard for a good language in atimely manner is essential. Trying to change C++ into a
"perfect” language or to produce a standard that cannot be misread by anyone -
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however devious or ill-educated - is far beyond the abilities of the committee (83.13).
In fact, it is beyond anyone working under the time constraint provided by alarge user
community (87.1).

6.2 How does the Committee Operate?

There are actually several committees formed to standardize C++. The first and larg-
est is the American National Standards Institute's ANSI-X3J16 committee. That
committee is the responsibility of the Computer and Business Equipment Manufac-
tures Association, CBEMA, and operates under its rules. In particular, this means
one-company-one-vote voting and a person who doesn't work for a company counts
as a company. A member can start voting at the second meeting attended. Officialy,
the most important committee is the International Standards Organization's 1SO-
WG-21. That committee operates under international rules and is the one that will
findly make the result an international standard. In particular, this means one-
country-one-vote voting. Other countries, including Britain, Denmark, France, Ger-
many, Japan, Russia, and Sweden now have their own national committees for stan-
dardizing C++. These national committees send requests, recommendations, and rep-
resentatives to thejoint ANSI/ISO meetings.

Basically, we have decided not to accept anything that doesn't pass under both
ANSI and ISO voting rules. This implies that the committee operates rather like a
bicameral parliament with a "lower house" (ANSI) doing most of the arguing and an
"upper house" (1SO) ratifying the decisions of the lower house provided they make
sense and duly respect the interests of the international community.

On one occasion, this procedure led to the rejection of a proposal that would oth-
erwise have passed by a small magjority. Thus, | think the national representatives
saved us from a mistake that could have caused dissension. | couldn't interpret that
majority as reflecting a consensus and | therefore think that - independently of the
technical merit of the proposal - the national representatives gave the committee an
important reminder of their responsibilities under their charter. The issue in question
was that of whether C++ should have a specific form of defined minimum trandation
limits. A significantly improved proposal was accepted at alater meeting.

The ANSI and ISO committees meet jointly three times a year. To avoid confu-
sion | will refer to them using the singular committee. A meeting lasts a week out of
which many hours are taken up with legally mandated procedural suff. Yet more
hours are taken up by the kind of confusion you might expect when 70 people try to
understand what the issues really are. Some daytime hours and several evenings are
taken up by technical sessions where major C++ issues, such as international character
handling and run-time type identification, and issues relevant to standards work, such
as forma methods and organizations of international standardization bodies, are pre-
sented and discussed. The rest of the time is mostly taken up by working group meet-
ings and discussions based on the reports from those working groups.
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The current working groups are:

- C compatibility

- Core language

- Editoria

- Environment

- Extensions

- Internationa issues

- Libraries

- Syntax
Clearly, there is too much work for the committee to handle in only three weeks of
meetings a year, so much of the actual work goes on between meetings. To aid com-
munication, we use email alot. Every meeting involves something like three inches
of double-sided paper memos. These memos are sent in two packages: one arrives a
couple of weeks before a meeting to help members prepare, and one a couple of
weeks after to reflect work done between the first mailing and the end of the meeting.

6.2.1 Whoison the C++ Standards Committee?

The C++ committee consists of individuals of diverse interests, concerns, and back-
grounds. Some represent themselves, some represent giant corporations. Some use
PCs, some use UNIX boxes, some use mainframes, etc. Some use C++, some don't.
Some want C++ to be more of an object-oriented language (according to a variety of
definitions of "object-oriented"), others would have been more comfortable had
ANSI C been the end-point of C's evolution. Many have a background in C, some
don't. Some have a background in standards work, many don't. Some have a com-
puter science background, some don't. Some are programmers, some are not. Some
are language lawyers, some are not. Some serve end-users, some are tools suppliers.
Some are interested in large projects, some are not. Some are interested in C compati-
bility, some are not.

Except that al are officially unpaid volunteers (though most represent companies),
it is hard to find a generalization that covers al. This is good; only a very diverse
group could ensure that the diverse interests of the C++ community are represented. It
does make constructive discussion difficult and dow at times. In particular, this very
open process is vulnerable to disruption by individuals whose technical or personal
level of maturity doesn't alow them to understand or respect the views of others. |
also worry that the voice of C++ users (that is, programmers and designers of C++
applications) can be drowned by the voices of language lawyers, would-be language
designers, standards bureaucrats, implementers, etc.

Usually about 70 people attend a meeting, and of those, about half attend almost
all meetings. The number of voting, alternate, and observing members is more than
250. I'm an alternate member, meaning that | represent my company, but someone
else from my company votes. Let me give you aidea about who is represented here
by smply glancing over alist of members and copying out some of the better-known
names chosen from the membership list in 1990: Amdahl, Apple, AT&T, Bellcore,
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Borland, British Aerospace, CDC, Data General, DEC, Fujitsu, Hewlett-Packard,
IBM, Los Alamos National Labs, Lucid, Mentor Graphics, Microsoft, MIPS, NEC,
NIH, Object Design, Ontologies, Prime Computer, SAS Ingtitute, Siemens Nixdorf,
Silicon Graphics, Sun, Tandem Computers, Tektronix, Texas Instruments, Unisys, US
WEST, Wang, and Zortech. This list is of course biased towards companies | know
of and towards large companies, but | hope you get the idea that the industry is well
represented. Naturally, the individuals involved are as important as the companies
they represent, but | will refrain from turning this into an advertisement for my friends
by naming them.

6.3 Clarifications

Much of the best standards work is invisible to the average programmer and appears
quite esoteric and often boring when presented. The reason is that a lot of effort is
expended in finding ways of expressing clearly and completely "what everyone
already knows, but just happens not to be spelled out in the manual™ and in resolving
obscure issues that - at least in theory - don't affect most programmers. Naturally,
these issues are essential to implementers trying to ensure that a given language use is
correctly handled. In turn, these issues become essential to programmers because
even the most carefully written large program will deliberately or accidentally depend
on some feature that would appear obscure or esoteric to some. Unless implementers
agree, the programmer has little choice between implementations and becomes the
hostage of a single compiler purveyor - and that would be contrary to my view of
what C++ is supposed to be (see §2.1).

I will present two issues, name lookup and lifetime of temporaries, to illustrate the
difficult and detailed work done. The magjority of the committee's efforts are
expended on such issues.

6.3.1 Lookup Issues

The most stubborn problems in the definition of C++ relate to name lookup: exactly
which uses of a name refer to which declarations? Here, 1'll describejust one kind of
lookup problems: the ones that relate to order dependencies between class member
declarations. Consider:

int x;

class X {
int f() { returnx; }
int x;

b

Which x does X: : f () referto? Also:
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typedef char* T,;

class Y {
Tf() { Ta=0; return a; }
typedef int T;
b
Which T doesY: : f () use?

The ARM gives the answers: The x referred to in X: : f () is X: : x, and the defi-
nition of class Y is an error because the meaning of the type T changes &fter its use in
Y: :f ().

Andrew Koenig, Scott Turner, Tom Pennello, Bill Gibbons, and severa others
devoted hours to finding precise, complete, useful, logical, and compatible (with the
C standard and existing C++ code) answers to this kind of question at several consecu-
tive meetings and weeks of work in between meetings. My involvement in these dis-
cussions was limited by my need to focus on extension-related issues.

Difficulties arise because of conflicts between goals:

[1] We want to be able to do syntax analysis reading the source text once only.

[2] Reordering the members of a class should not change the meaning of the class.

[3] A member function body explicitly written inline should mean the same thing

when written out of line.

[4] Names from an outer scope should be usable from an inner scope (in the same

way asthey arein C).

[5] The rules for name lookup should be independent of what a name refers to.

If al of these rules hold, the language will be reasonably fast to parse, and users won't
have to worry about these rules because the compiler will catch the ambiguous and
near ambiguous cases. The current rules come very close to this ideal.

6.3.1.1 The ARM Name Lookup Rules

In the ARM, | addressed the problems with moderate success. Names from outer
scopes can be used directly, and | tried to minimize the resulting order dependencies
by two rules:
[1] The type redefinition rule: A type name may not be redefined in a class &fter it
has been used there.
[2] The rewrite rule: Member functions defined inline are analyzed as if they were
defined immediately after the end of their class declarations.
The redefinition rule makes class Y an error:

typedef char* T,

class Y {
Tf() { Ta=20; returna; }
typedef int T, // error T redefined after use
b
The rewrite rule says that class X should be understood as
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int x;

class X {
int f();
int x;
b

inline int X::f() { return x; } // returns X:x

Unfortunately, not all examples are this simple. Consider:

const int i = 99;
class Z {
int a[i];
int f() { returni; }
enum{ i =7 };
b

According to the ARM rules and (clearly?) contrary to their intent, this example is
legal, and the two uses of i refer to different definitions and yield different values.
The rewrite rule ensures that the i usedin Z: : f () is Z: : i with the value 7. How-
ever, there is no rewrite rule for the i used as an index, so it refers to the global i
with the value 99. Even though i is used to determine atype, it is not itself a type
name, o it is not covered by the type redefinition rule. The ANSI/ISO rules ensure
the the example is illegal because i is redefined after it has been used.
Also:

class T {
Af ()
void g() {Aa; /*...*/|}
typedef int A
b
Assume that no type A was defined outside T. Isthe declaration of T: : f () legal? Is
the definition of T: : g () legal? The ARM deems the declaration of T: : f () illega
because A is undefined at that point; the ANSI/ISO rules agree. On the other hand,
the ARM deems the definition of g () legal if you interpret the rewrite rule to say that
"rewriting" takes place before syntax analysis and illegal if you interpret it to alow
syntax analysis firgt and rewrite afterward. The issue is whether A is a type name
when the syntax analysis is done. | think that the ARM supports the first view (that
is, the declaration of T: : g () islegal), but | wouldn't claim that to be indisputably
obvious. The ANSI/ISO rules agree with my interpretation of the ARM rules.

6.3.1.2 Why Allow Forward References?

In principle, these problems could be avoided by insisting on strict one-pass analysis:
You can use aname if and only if it has been declared ''above/before" and what hap-
pens "below/after" can't affect a declaration. This is, after al, the rule in C and
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elsewhere in C++. For example:

int x;
void f()
.
int'y =x; [// global x
int x = 7;
int z = x; /Il local x
}

However, when | first designed classes and inline functions, Doug Mcllroy argued
convincingly that serious confusion would result from applying that rule to class dec-
larations. For example:

int x;

class X {
void f() { int'y =x; } /] ::xor Xi:x?
voidg() ;
int x;
voidh() { int' y=x; } /] X:x
b

void X:g() { int y=x; } [/ X:Xx

When the declaration of X is large, the fact that different xs are present will often be
unnoticed. Worse, unless the member x was used consistently, a silent change of
meaning would result from a reordering of members. Taking a function body out of
the class declaration into a separate member function declaration could aso quietly
change its meaning. The rewrite and redefinition rules provided protection against
subtle errors and some freedom to reorganize classes.

These arguments apply to nonclass examples also, but only for classes is the com-
piler overhead of this protection affordable - and only for classes could C compatibil-
ity problems be avoided. In addition, class declarations are exactly where reorderings
are most frequent and most likely to have undesirable side effects.

6.3.1.3 The ANSI/ISO Name Lookup Rules

Over the years, we found many examples that weren't covered by the explicit ARM
rules, were order-dependent in obscure and potentially dangerous ways, or the inter-
pretation of the rules were uncertain. Some were pathological. One favorite was
found by Scott Turner:

typedef int P();
typedef int Q();
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class X {
static P(Q); // define Qto be a P.
/1 equivalent to ''static int Q()"'"'
/1 the parentheses around Q are redundant

/1 Qis no longer a type in this scope

static Q(P); // define Qto be a function
/1 taking an argument of type P
/1 and returning an int.
// equivalent to ''static int Qint())""’

b
Declaring two functions with the same name in the same scope is fine as long as their
argument types differ sufficiently. Reverse the order of member declarations, and we
define two functions called P instead. Remove the typedef for either P or Q from
the context, and we get yet other meanings.

This example ought to convince anybody that standards work is dangerous to your
mental health. The rules we finally adopted makes this example undefined.

Note that this example - like many others - is based on the unfortunate "implicit
int" rule inherited from C. | tried to get rid of that rule more than ten years ago
(82.8.1). Unfortunately, not al sick examples rely on the implicit int rule. For
example:

int b;

class Z {
static int a[sizeof(b)];
static int b[sizeof(a)];
b
This example is an error because b changes meaning &fter it has been used. Fortu-
nately, this kind of error is easy for a compiler to catch - unlike the P (Q) example.

At the Portland meeting in March 1993 the committee adopted these rules:

[1] The scope of a name declared in a class consists not only of the text following
the name's declarator but also of al function bodies, default arguments, and
constructor initializers in that class (including such things in nested classes). It
excludes the name's own declarator.

[2] A name used in aclass S must refer to the same declaration when reevaluated
in its context and in the completed scope of S. The completed scope of S con-
dsts of the class S, S's base classes, and al classes enclosing S. This is often
caled ''the reconsideration rule."

[3] If reordering member declarations in a class yields an alternate valid program
under [1] and [2], the program's meaning is undefined. This is often called
"'the reordering rule."

Note that very few programs are affected by this change of rules. The new rules are
primarily aclearer statement of the original intent. At firgt glance, these rules seem to
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require a multi-pass algorithm in a C++ implementation. However, they can be imple-
mented by a single pass followed by one or more passes over information gathered
during the first pass, and are not a performance bottleneck.

6.3.2 Lifetime of Temporaries

Many operations in C++ require the use of temporary values. For example:

void f(X al, X a2)
{
extern void g(const X&);
X z;
...
z = al +a2;
g(al +a2);
...
}

In general, an object (probably of type X) is needed to hold the result of al+a2
before assigning it to z. Similarly, an object is needed to hold the result of al +a2
passed to g (). Assume that X is a class with a destructor. Where, then, is the
destructor for this temporary invoked? My original answer to that question was ''at
the end of the block just like every other local variable." There proved to be two
problems with this answer:

[1] Sometimes, that doesn't leave atemporary around for long enough. For exam-
ple, g () might push a pointer to its argument (the temporary resulting from
al+a2) onto a stack, and someone might pop that pointer and try to use it
after f () hasreturned, that is, after the temporary has been destroyed.

[2] Sometimes, that leaves atemporary around for too long. For example, X might
be a 1,000 by 1,000 matrix type and dozens of temporary matrixes might be
created before the end of block is reached. This will exhaust even large rea
memories and can send a virtual memory mechanism into spasms of paging.

In my experience, the former problem is rare in real programs, and its general solution
is the use of automatic garbage collection (810.7). The latter problem, however, is
common and serious. In practice, it forced some people to enclose each statement
suspected of generating temporaries in its own block:

void f(X al, X a2)
{
extern void g(const X&);
X z;
...
{z = al +a2; }
{g(al +a2);}
...
}

With the point of destruction at the end of the block - as implemented by Cfront -
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users could at least explicitly work around the problem. However, a better resolution
was loudly demanded by some users. Consequently, in the ARM, | relaxed the rule to
allow destruction at any point after the temporary value was first used and the end of
the block. This was a misguided act of intended kindness. It caused confusion and
helped nobody because as different implementers chose different lifetimes of tempo-
raries, nobody could write code that was guaranteed to be portable except by assum-
ing immediate destruction - and that was quickly shown to be unacceptable by break-
ing code using common and well-liked C++ idioms. For example:

class String {
A
public:
friend String operator+(const String& const Stringg&);
...
operator const char*(); // C-style string

}s

void f(String sl1l, String s2)

{
printf("%", (const char*) (sl +s2));
...

}

The ideais that String's conversion operator is invoked to produce a C-style string
for printf to print. In the typical (naive and efficient) implementation, the conver-
sion operator smply returns a pointer to part of the String object.

Given this simple implementation of the conversion operator, this example
wouldn't work under an "immediate destruction of temporaries’ implementation: A
temporary is created for sl +s2, the conversion to a C-style string obtains a pointer to
the internals of this temporary, the temporary is destroyed, and then the pointer to the
internals of the now-destroyed temporary is passed to printf (). The destructor for
the String temporary holding sl +s2 would have freed the memory holding the C-
style string.

Such code is common and even implementations that generally follow an immedi-
ate destruction strategy, such as GNU's G++, tended to delay destruction in such
cases. This kind of thinking led to the idea of destroying temporaries at the end of the
statement in which they were constructed. This would make the example above not
only legal, but guaranteed portable across implementations. However, other "almost
equivalent" examples would break. For example:

void g(String sl1, String s2)
{
const char* p = sl +s2;
printf("%", p);
...
}

Given the "destroy temporaries at the end of statement" strategy the C-string pointed
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to by p would reside in the temporary representing sl + s2 and be freed at the end of
the statement initializing p.

Discussions of the lifetime of temporaries festered in the standards committee for
about two years until Dag Brack successfully brought it to a close. Before that, the
committee spent much time discussing the relative merits of solutions that all were
good enough. Everyone also agreed that no solution was perfect. My opinion -
somewhat loudly expressed - was that users were hurting for lack of a resolution and
that the time had come tojust pick one. | think the best alternative was chosen.

Dag's summary of the issues in July 1993 was primarily based on work by
Andrew Koenig, Scott Turner, and Tom Pennello. It identified seven main aternative
points of destruction of atemporary:

[1] Just after the first use.

[2] Atthe end of statement.

[3] At the next branching point.

[4] At the end of block (original C++ rule, like Cfront).

[5] At the end of function.

[6] After the last use (implies garbage collection).

[7] Leave undefined between first use and end of block (ARM rule).
| leave it as an exercise to the reader to construct valid arguments in favor of each
aternative. It can be done. However, serious, valid abjections can also be made for
each. Conseguently, the real problem is picking an alternative with a good balance of
benefits and problems.

In addition, we considered the possibility of having a temporary destroyed after its
last use in ablock, but that requires flow analysis, and we didn't fed we could require
every compiler to do aflow analysis well enough to ensure that "after the last use in a
block" was a well-defined point in the computation in every implementation. Please
note that local flow analysis would not be sufficient to provide reliable warning
against "too early destruction;" conversion functions returning a pointer to the inter-
nals of an object are often defined in a compilation unit different from the ones in
which they are used. Trying to ban such functions would be pointless because a ban
would break much existing code and couldn't be enforced anyway.

From about 1991, the committee focused on "end of statement,” and naturally
that alternative was colloquially known as EOS. The problem was to decide precisely
what EOS should mean. For example:

void h(String sl1, String s2)

{
const char* p;
if (p=sl+s2) {
/...
}
}

Should the value of p be useful within the statement block? That is, does the
destruction of the object holding sl +s2 take place at the end of the condition or at
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the end of the whole if statement? The answer is that the object holding sl +s2 will
be destroyed at the end of the condition. It would be absurd to guarantee this:

if (p = sl+s2) printf("%s",p);
while making this

p = sl +s2;
printf("9%", p);

implementation-dependent.
How should branching within an expression be handled? For example, should this
be guaranteed to work?:

if ((p=sl+s2) && p[0]) {
...

}

The answer is yes. It is much easier to explain this answer than to explain special
rules for &&, | |, and ?:. There was some opposition to this, though, because this
rule cannot be implemented in general without introducing flags to ensure that tempo-
rary objects are destroyed only if they appeared on a branch actualy taken. However,
the compiler writers on the committee rose to the challenge and demonstrated that the
overhead imposed was vanishingly small and basically irrelevant.

Thus, EOS came to mean "end of full expression," where a full expression is an
expression that is not a sub-expression of another expression.

Note that the resolution to destroy temporaries at the end of full expression will
break some Cfront code, but it will not break any code guaranteed to work by the
ARM. The resolution addresses the desire for a well-defined and easy-to-explain
point of destruction. It also satisfies the desire not to have temporaries hanging
around for too long. Objects that need to stay around for longer must be named.
Alternatively, one can use techniques that don't require long-lived objects. For exam-
ple:

void f(String sl1, String s2)
{ printf("%",sl+s2); [/ ok

const char* p = sl +s2;
printf("%",p); // won't work, tenporary destroyed

String s3 = sl +s2;
printf("%", (const char*)s3); [/ ok

cout << s3; /] ok

cout << sl +s2; /1] ok
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6.4 Extensions

A critical issue was - and is - how to handle the constant stream of proposals for lan-
guage changes and extensions. The focus of that effort is the extensions working
group of which I'm chairman. It is much easier to accept a proposal than to rgect it.
You win friends that way, and people praise the language for having so many "neat
features." However, a language made as a shopping list of features without coher-
ence will die, so there is no way we could accept even most of the features that would
be of genuine help to some section of the C++ community.

At the Lund (Sweden) meeting this cautionary tale became popular:

"'We often remind ourselves of the good ship Vasa. It was to be the pride of the

Swedish navy and was built to be the biggest and most beautiful battleship ever.

Unfortunately, to accommodate enough statues and guns, it underwent major

redesigns and extension during construction. The result was that it only made it

half way across Stockholm harbor before a gust of wind blew it over, and it sank
killing about 50 people. It has been raised and you can now see it in a museum in

Stockholm. 1t is a beauty to behold - far more beautiful at the time than its unex-

tended first design and far more beautiful today than if it had suffered the usual

fate of a 17th century battle ship - but that is no consolation to its designer, build-
ers, and intended users [ Stroustrup, 1992b]."
But why consider extensions at all? After all, X3J16 is a standards group, not a lan-
guage design group chartered to design "C++++." Worse, a group of more than 250
people with its members changing over time isn't a promising forum for language
design.

First of all, the group was mandated to deal with templates and exception hand-
ling. Even before the committee had time to work on those, suggestions for exten-
sions and even for incompatible changes were being sent to committee members. The
user community, even most users who didn't personaly submit proposals, clearly
expected the committee to consider these suggestions. If the committee takes such
suggestions serioudly, as it does, it provides afocus for discussion of C++'s future. If
it does not, the activity will simply go elsewhere and incompatible extensions will
appear.

Also, despite paying lip service to minimalism and stability, many people like new
features. Language design is intrinsically interesting, the debates about new features
are stimulating, and they provide a good excuse for new articles and releases. Some
features might even help programmers, but for many that seems to be a secondary
motivation. If ignored, these factors can disrupt progress. | prefer them to have a
constructive outlet.

Thus, the committee has a choice between discussing extensions, discussing
dialects after they have come into use, and ignoring reality. Every one of these alter-
natives have been chosen by various standards committees over the years. Mogt -
including the Ada, C, Caobol, Fortran, Modula-2, and Pascal-2 committees - have cho-
sen to consider extensions.

My personal opinion is that extension activity of various sorts is inevitable, and it
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is better to have it out in the open and conducted in a semi-civilized manner in a pub-
lic forum under somewhat formal rules. The aternative is a scramble to get ideas
accepted through the mechanism of attracting users in the marketplace. That mecha
nism isn't conducive to cam deliberation, open discussion, and attempts to serve all
users. The result would be the language fracturing into dialects.

| consider the obvious dangers inherent in dealing with extensions preferable to
the certain chaos that would result from not dealing with them. A dowly eroding
majority of the committee has agreed, and we are approaching the point where exten-
sions work as conducted until now must cease because standards documents will start
appearing, and all activity must be directed towards responding to comments on
those.

Only time will tell where the energy thus left without an outlet will go to. Some
will go to other languages, some will go into experimental work, some will go into
library building (the traditional C++ alternative to language changes). It is interesting
to note that standards groups, like all other organizations, find it hard to disband
themselves. Often, a standards group reconstitutes itself as a forum for revisions or as
the bureaucratic mechanism for the creation of a next-level standard, that is, as a
design committee for a new language or dialect. The Algol, Fortran, and Pascal com-
mittees, and even the ANSI C committee, provide examples of this phenomenon.
Usually, the redirection of effort from standardizing an established language to the
design of a would-be successor is accompanied by a maor change in personnel and
also of ideals.

In the meantime, | try to guard against the dangers of design by committee by
spending significant time on every proposed extension. This strategy isn't foolproof,
but it does provide a degree of protection against the acceptance of mutually inconsis-
tent features and against the loss of a coherent view of the language.

The danger of design by committee is the danger of losing a coherent view of
what the language is and ought to evolve into in favor of political deals over individ-
ual features and resolutions.

A committee can easily fall into the trap of approving a feature just because some-
one insists that it is essential. It is always easier to argue for a feature than to argue
that the advantage of the feature - which will be very plausible in al interesting cases
- is outweighed by nebulous concerns of coherence, simplicity, stability, difficulties
of trangition, etc. Also, the way language committees work does not seem to lend
itself well to arguments based on experimentation and experience-based reasoning.
I'm not quite sure why this is, but maybe the committee format and resolution by vot-
ing favor arguments that are more easily digested by exhausted members. It aso
appears that logica arguments (and sometimes even illogical arguments) are more
persuasive than reports on other people's experience and experiments.

Thus, "standardization" can become a force for instability. The results of such
instability can be a change for the better, but there is always the danger that it might
become random change or change for the worse. To avoid this, standardization has to
be done at the right stage of a language's evolution: &fter its path of evolution has
been clearly outlined and before divergent dialects supported by powerful commercial
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interests has emerged. | hope this is the case for C++, and that the committee will
continue to show the necessary restraint in innovation.

It it worth remembering that people will manage even without extensions. Propo-
nents of language features tend to forget that it is quite feasible to build good software
without fancy language support. No individual language feature is necessary for good
software design, not even the ones we would hate to be without. Good software can
be and often is written in C or in a small subset of C++. The benefits of language fea
tures are the convenience of expressing ideas, the time needed to get a program right,
the clarity of the resulting code, and the maintainability of the resulting code. It is not
an absolute either/or. More good code has been written in languages denounced as
"bad" than in languages proclaimed "wonderful" - much more.

6.4.1 Criteria

To help people understand what was involved in proposing an extension or a change
to C++, the extensions working group formulated a set of questions that is likely to be
asked about every proposed feature [Stroustrup, 1992b:

""The list presents criteria that have been used to evaluate features for C++.

[1] Isit precise? (Can we understand what you are suggesting?) Make a clear,
precise statement of the change as it affects the current draft of the lan-
guage reference standard.

[a What changes to the grammar are needed?
[b] What changes to the description of the language semantics are needed?
[c] Does it fit with the rest of the language?

[2] What is the rationale for the extension? (Why do you want it, and why

would we also want it?)

[ Why is the extension needed?

[b] Who is the audience for the change?

[c] Is this a general-purpose change?

[d] Does it affect one group of C++ language users more than others?
[€] Isit implementable on al reasonable hardware and systems?
[f] Isit useful on on all reasonable hardware and systems?

[g] What kinds of programming and design styles does it support?
[h] What kinds of programming and design styles does it prevent?
[(1 What other languages (if any) provide such features?

[[] Doesit ease the design, implementation, or use of libraries?

[3] Has it been implemented? (If so, has it been implemented in the exact form
that you are suggesting; and if not, why can you assume that experience
from "similar" implementations or other languages will carry over to the
feature as proposed?)

[ What effect does it have on a C++ implementation?
[X] on compiler organization?
[y] on run-time support?

[b] Was the implementation complete?
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[c] Was the implementation used by anyone other than the implementer(s)?

[4] What difference does the feature have on code?

[ What does the code look like without the change?
[b] What is the effect of not doing the change?
[c] Does use of the new feature lead to demands for new support tools?

[5] What impact does the change have on efficiency and compatibility with C
and existing C++?

[ How does the change affect run-time efficiency?
[X] of code that uses the new feature?
[y] of code that does not use the new feature?
[b] How does the change affect compile and link times?
[c] Does the change affect existing programs?
[X] Must C++ code that does not use the feature be recompiled?
[y] Does the change &ffect linkage to languages such as C and Fortran?
[d] Does the change &ffect the degree of static or dynamic checking possi-
ble for C++ programs?

[6] How easy is the change to document and teach?

[a] to novices?
[b] to experts?

[7] What reasons could there be for not making the extension? There will be
counter-arguments and part of our job is to find and evaluate them, so you
canjust as well save time by presenting a discussion.

[a] Does it affect old code that does not use the construct?
[b] Isit hard to learn?

[c] Does it lead to demands for further extensions?

[d] Does it lead to larger compilers?

[€] Does it require extensive run-time support?

[8] Arethere

[a] Alternative ways of providing afeature to serve the need?
[b] Alternative ways of using the syntax suggested?
[c] Attractive generalizations of the suggested scheme?
Naturally, this list is not exhaustive. Please expand it to cover points relevant to
your specific proposal and leave out points that are irrelevant.”
These questions are of course a collection of the kinds of questions practical language
designers have always asked.

6.4.2 Status

So how is the committee doing? We won't really know until the standard appears
because there is no way of knowing which, if any, of the backlog of proposals will be
accepted or how new proposals will fare. Here is an incomplete list summarizing the
backlog of extensions proposals as of December 1993 (after the San Jose meeting):

- In-class initialization of class members

- Binary literas
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Extended (international) character sets (86.5.3.2)
A few template extensions (815.4, §15.9.3)

In addition, many ideas have been informally presented or even been widely dis-
cussed, but no forma proposals have been brought to the committee:

Garbage collection (810.7)

NCEG proposals (for example, 86.5.2)
Discriminated unions

User-defined operators (811.6.2)

Evolvable/indirect classes

Anonymous structs

Enumerations with predefined ++, «, etc. operators
Overloading based on return type

Composite Operators (811.6.3)

Keyword for the null pointer (NULL, nil, etc.) (811.2.3)
Pre- and post-conditions

Improvements to the Cpp macros

Rebinding of references

Continuations

Currying

There is some hope of restraint and that accepted features will be properly integrated
into the language. Only afew new features have been accepted so far:

Exception handling (' 'mandated") (8 16)

Templates ("mandated") (815)

European character set representation of C++ (86.5.3.1)
Relaxing rule for return types for overriding functions (813.7)
Run-time type identification (814.2)

Overloading based on enumerations (811.7.1)

User-defined allocation and deallocation operators for arrays (8 10.3)
Forward declaration of nested classes (§813.5)

Namespaces (817)

Mutable (813.3.3)

Boolean type (§11.7.2)

A new syntax for type conversion (8 14.3)

An explicit template instantiation operator (815.10.4)

Explicit template arguments in template function calls (8 15.6.2)

Exceptions and templates stand out among the extensions as being mandated by the
original proposal and described in the ARM, and also by being a couple of magni-
tudes more difficult to define and to implement than any of the other proposals.

To contrast, the committee has rejected many proposals:

Severa proposals for direct support for concurrency

Renaming of inherited names (8 12.8)

Keyword arguments (86.5.1)

Several proposals for dight modifications of the data hiding rules
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- Redtricted pointers ("son of noalias") (86.5.2)
- Exponentiation operator (§11.5.2)

- Automatically generated composite operators

- User-defined operator. () (811.5.2)

- Nested functions

Please note that a rejection doesn't imply that the proposal was deemed bad or even
useless. In fact, most proposals that reach the committee are technically sound and
would help at least some subset of the C++ user community. The reason is that most
ideas never make it through the initial scrutiny and effort to make it into a proposal.

6.4.3 Problemswith Good Extensions

Even good extensions cause problems. Assume for a moment that we have an exten-
sion everybody likes so that no time is wasted discussing its validity. It will still
divert implementer efforts from tasks that some people will consider more important.
For example, an implementer may have a choice of implementing the new feature or
implementing an optimization in the code generator. Often, the feature will win out
because it is more visible to users.

An extension can be perfect when viewed in isolation, yet flawed from a wider
perspective. Most work on an extension focuses on its integration into the language
and its interactions with other language features. The difficulty of this kind of work
and the time needed to do it well is invariably underestimated.

Any new feature makes existing implementations outdated. They don't handle the
new feature. Thus, users will have to upgrade, live without the feature for awhile, or
manage two versions of a system (one for the latest implementations and one for the
old one). This last option is typically the one library and tool builders must choose.
For example, adding a new feature based on a novel syntactic construct will require
updating tools such as syntax-based editors.

Teaching material will have to be updated to reflect the new feature - and maybe
simultaneously reflect how the language used to be for the benefit of users that
haven't yet upgraded.

These are the negative effects of a ''perfect” extension. If a proposed extension is
controversial, it will in addition soak up effort from the committee members and from
the community at large. If the extension has incompatible aspects, these may have to
be addressed when upgrading from an older implementation to a new one - some-
times even when the new feature isn't used. The classical example is the introduction
of anew keyword. For example, this innocent looking function

voi d usi ng(Tabl e* nanespace) { /* ... */ }

ceased to be legal when namespaces were introduced because using and
namespace are new keywords. In my experience, though, the introduction of new
keywords creates few technical problems, and those are easily fixed. Proposing a new
keyword, on the other hand, never fails to cause a howl of outrage. The practical
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problems with new keywords can be minimized by choosing names that aren't too
likely to clash with existing identifiers. For this reason, using was preferred to
use, and namespace was chosen over scope. When, as an experiment, we intro-
duced using and namespace into a local implementation without any announce-
ment, nobody actually noticed their presence for two months.

In addition to the very real problems of getting a new feature accepted and into
use, the mere discussion of extensions can have negative effects by creating an
impression of instability in the minds of some users. Many users and would-be users
do not understand that changes are carefully screened to minimize effects on existing
code. Idedlistic proponents of new features often find the constraints of stability and
compatibility with both C and existing C++ hard to accept and rarely do much to alay
fears of instability. Also, enthusiastic proponents of "improvements" tend to over-
state the weaknesses of the language to make their extensions look more attractive.

6.4.4 Coherence

| see the main challenge of extension proposals as maintaining the coherence of C++
and communicating a view of this coherence to the user community. Features
accepted into C++ must work in combination, must support each other, must compen-
sate for serious real problems in C++ as it stood without them, must fit syntactically
and semanticaily into the language, and must support a manageable style of program-
ming. A programming language cannot bejust a set of neat features, and the primary
effort involved in evaluating and developing extensions is to refine them so that they
become an integral part of the language. For an extension that | consider serioudly, |
estimate that about 95% of my personal effort goes into finding a form of the original
idea/proposal that can be smoothly integrated into C++. Typically, much of this effort
involves working out a clear transition path for implementers and users. Even the
best new feature must be rejected if there is no way users can adopt it without throw-
ing away most of their old code and old tools. See Chapter 4 for a more extensive
discussion of acceptance criteria.

6.5 Examples of Proposed Extensions

Generaly in this book, | discuss a proposed language festure in the context of related
features. A few, however, don't seem to fit anywhere, so | use them as examples
here. Not surprisingly, the features that don't naturally fit anywhere have a tendency
to get rejected. A feature, however reasonable when considered in isolation, should
be considered with great suspicion unless it can be seen as part of a general effort to
evolve the language in some definite direction.

6.5.1 Keyword Arguments

Roland Hartinger's proposal for keyword arguments, that is, for a mechanism for
specifying function arguments by name in acall, was close to technically perfect. The
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reason the proposal was withdrawn rather than accepted is therefore particularly inter-
esting. It was withdrawn because the extensions group reached a consensus that the
proposal was close to redundant, would cause compatibility problems with existing
C++ code, and would encourage programming styles that ought not to be encouraged.
The discussion here reflects the discussions in the extensions working group. As
usual, hundreds of relevant remarks must remain unmentioned for lack of space.

Consider an ugly, but unfortunately not unrealistic, example borrowed from an
analysis paper written by Bruce Eckel:

class wi ndow {
...
public:
wi ndow(
wi nt ype=st andard,
int ul_corner_x=0,
int ul _corner_y=0,
int xsize=100,
int ysize=100,
col or Col or=bl ack,
border Border=single,
col or Border_col or =bl ue,
WSTATE wi ndow_st at e=open);
...
h
If you want to define a default window, al is well. 1f you want to define a window
that is "almost default,” the specification can get tedious and error-prone. The pro-
posal was simply to introduce a new operator, : =, to be used in calls to specify a
value for a named argument. For example:

new window(Color:=green,ysize:=150);
would be equivalent to
new window(standard,0,0,100,150,green);

which, thanks to the default arguments, is equivalent to
neww ndow( st andard, O, 0, 100, 150, green, si ngl e, bl ue, open) , -

This seems to be a useful bit of syntactic sugar that might make programs more read-
able and more robust. The proposal was implemented to be sure that al conceptual
and integration problems were ironed out; no significant or difficult problems were
found. In addition, the proposed mechanism was based on experience from other lan-
guages, such as Ada.

On the other hand, there is no doubt that we can live without keyword arguments;
they do not provide any new fundamental facility, don't support a significant new pro-
gramming paradigm, and don't close a hole in the type system. This leaves questions
with answers that depend more on taste and impression of the state of the C++ user
community:
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[1] Will keyword arguments lead to better code?
[2] Will keyword arguments lead to confusion or teaching problems?
[3] Will keyword arguments cause compatibility problems?
[4] Should keyword arguments be one of the few extensions we can accept?
The first serious problem discovered with the proposal was that keyword arguments
would introduce a new form of binding between a calling interface and an implemen-
tation:
[1] An argument must have the same name in afunction declaration as in the func-
tion definition.
[2] Once a keyword argument is used, the name of that argument cannot be
changed in the function definition without breaking user code.
Because of the cost of recompilation, many people are worried about any increase in
the degree of binding between interfaces and implementations. Worse, this turned out
to be a compatibility problem of significant magnitude. Some organizations recom-
mend a style with "long, informative" argument names in header files, and "short,
convenient" names in the definitions. For example:

void reverse(int* elements, int |length_of_element_array)

...

void reverse(int* v, int n)

{
...

}

Naturally, some people find that style abhorrent, whereas others (including me) find it
quite reasonable. Apparently, significant amounts of such code exist. Further, an
implication of keyword arguments would be that no name in a commonly distributed
header file could be changed without risking breaking code. Different suppliers of
header files for common services (for example, Posix or X) would also have to agree
on argument names. This could easily become a bureaucratic nightmare.

Alternatively, the language shouldn't require declarations to have the same name
for the same argument. That seemed viable to me. However, people didn't seem to
like that variant either.

There could be a noticeable impact on link times if the rule that argument names
must match across compilation units is checked. If it isn't checked, the facility would
not be type safe and could become a source of subtle errors.

Both the potential linking cost and the very real binding problem could be easily
avoided by omitting argument names in header files. A cautious user might therefore
avoid specifying argument names in header files. Thus, to quote Bill Gibbons, "The
net impact on readability of C++ might actually be negative."

My main worry about keyword arguments was actually that keyword arguments
might dow the gradual transition from traditional programming techniques to data
abstraction and object-oriented programming in C++. In code that | find best written
and easiest to maintain, long argument lists are very rare. In fact, it is a common
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observation that a transition to a more object-oriented style leads to a significant
decrease in the length of argument lists; what used to be arguments or global values
become local state. Based on experience, | expect the average number of arguments
to drop to less than two and that functions with more than two arguments will become
rare. This implies that keyword arguments would be most useful in code we deemed
poorly written. Would it be sensible to introduce a new feature that primarily sup-
ported programming styles that we would prefer to see decline? The consensus, based
on this argument, the compatibility issues, and afew minor details, was no.

6.5.1.1 Alternativesto Keyword Arguments

Given that we don't have keyword arguments, how would | reduce the length of the
argument list in the window example to something convenient? First of al, the
apparent complexity is aready reduced by the default arguments. Adding extra types
to represent common variants is another common technique:

class col ored_wi ndow : public w ndow {
public:
col ored_wi ndow( col or c=bl ack)
:wi ndow( st andard, 0, 0, 100, 100,c) { }

b

cl ass bordered_wi ndow : public w ndow {
public:
bor der ed_wi ndow( bor der b=si ngle, color bc=bl ue)
:wi ndow( st andard, 0, 0, 100, 100, bl ack, b, be) { }
¥

This technique has the advantage of channeling usage into a few common forms and
can therefore be used to make code and behavior more regular. Another technique is
to provide explicit operations for changing settings from the defaults:

class w_ args {
Wi ntype wt;
int ulcx, ulcy, xz, yz;
color we, bc;
bor der b;
WSTATE ws;
public:
w args() // set defaults
wt (standard), ulcx(0), ulcy(0), xz(100), yz(100),
we( bl ack), b(single), bc(blue), ws(open) { }
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/1 override defaults:

w_args& ysize(int s) { yz=s; return *this; }

w_args& Color(color c¢) { we=c; return *this; }
w_args& Border(border bb) { b = bb; return *this; }
w_args& Border_color(color ¢) { bc=c; return *this; }
...

b

cl ass wi ndow {
...
wi ndow(w_args wa); // set options fromwa
/1
b
From this, we get a notational convenience that is roughly equivalent to what key-
word arguments provide:

wi ndow w, // default w ndow
wi ndow w( w_args().col or(green).ysize(150) );

This technique has the significant advantage that it becomes easy to pass objects rep-
resenting arguments around in a program.

Naturaly, these techniques can be used in combination. The net effect of such
techniques is to shorten argument lists and thereby decrease the need for keyword
arguments.

A further reduction in the number of arguments could be obtained by using a
Point type rather than expressing interfaces directly in terms of coordinates.

6.5.2 Restricted Pointers

A Fortran compiler is alowed to assume that if a function is given two arrays as argu-
ments, then those arrays don't overlap. A C++ function is not alowed to assume that.
The result is an advantage in speed for the Fortran routine of between 15% and 30
times dependent on the quality of the compiler and the machine architecture. The
spectacular savings come from vectorizing operations for machines with special vec-
tor hardware such as Crays.

Given C's emphasis on €fficiency, this was considered an affront and the ANSI C
committee proposed to solve the problem by a mechanism called noal i as to specify
that a C pointer should be considered alias-free. Unfortunately, the proposal was late
and so half-baked that it provoked Dennis Ritchie to his only intervention in the C
standards process. He wrote a public letter stating, " noal i as must go; this is non-
negotiable."

After that, the C and C++ community was understandably reluctant to tackle alias-
ing problems, but the issue is of key importance to C users on Crays so Mike Holly
from Cray grasped the nettle and presented an improved anti-aliasing proposal to the
Numerical C Extensions Group (NCEG) and to the C++ committee. The idea was to
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allow a programmer to state that a pointer should be considered dias-free by declaring
itrestricted. For example:

voi d* nenctopy(void*restrict sl1, const void* s2, size t n);

Since sl is specified to have no dlias, there is no need to declare s2 restricted,
also. The keyword restrict would syntacticaly apply to * in the same way that
const and volatile do. This proposal would solve the C/Fortran efficiency dis-
crepancy by selectively adopting the Fortran rule.

The C++ committee was naturally sympathetic to any proposal that improves effi-
ciency and discussed the proposal at some length, but finally decided to reject it with
hardly a dissenting voice. The key reasons for the rejection were:

[1] The extension is not safe. Declaring a pointer restricted alows the com-

piler to assume that the pointer has no aliases. However, a user wouldn't nec-
essarily be aware of this, and the compiler can't ensure it. Because of the
extensive use of pointers and references in C++, more errors are likely to arise
from this source than Fortran experience might suggest.
Alternatives to the extension have not been sufficiently explored. In many
cases, alternatives such as an initial check for overlap combined with specia
code for non-overlapping arrays is an option. In other cases, direct cals to
specialized math libraries, such as BLAS, can be used to tune vector opera-
tions for efficiency. Promising aternatives for optimization have yet to be
explored. For example, global optimization of relatively smal and stylized
vector and matrix operations appears feasible and worthwhile for C++ compil-
ers for high-performance machines.

[3] The extension is architecture-specific. High-performance numerical computa-
tion is a specidized field using specialized techniques and often specialized
hardware. Because of this, it may be more appropriate to introduce a non-
standard architecture specific extension or pragma. Should the need for the
utility of this kind of optimization prove useful beyond a narrow community
using specialized machine architectures, the extension must be reevaluated.

One way of looking at this decision is as a reconfirmation of the idea that C++ sup-
ports abstraction through general mechanisms rather than specialized application areas
through special-purpose mechanisms. | would certainly like to help the numerical
computation community. The question is how? Following closely in Fortran's foot-
steps for the classical vector and matrix algorithms may not be the best approach. It
would be nice if every kind of numeric software could be written in C++ without loss
of efficiency, but unless something can be found that achieves this without compro-
mising the C++ type system it may be preferable to rely on Fortran, assembler, or
architecture-specific extensions.

[2

—_—

6.5.3 Character Sets

C relies on the American variant of the international 7-bit character set 1SO 646-1983
caled ASCII (ANSI3.4-1968). This causes two problems:
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[1] ASCII contains punctuation characters and operator symbols, such as | and {,
that are not available in many national character sets.

[2] ASCII doesn't contain characters, such as A and as, used in languages other
than English.

6.5.3.1 Restricted Character Sets

The ASCII (ANSI3.4-1968) specia characters [, 1, {, }, |, and \ occupy character
set positions designated as alphabetic by 1SO. In most European national 1SO-646
character sets, these positions are occupied by letters not found in the English alpha-
bet. For example, the Danish national character set uses these values for the vowels
/A, &8 ¢, and @. No significant amount of text can be written in Danish without
them. This leaves Danish programmers with the unpleasant choice of acquiring com-
puter systems that handle full 8-bit character sets, such as ISO-8859/1/2, not using
three vowels of their native language, or not using C++. Speakers of French, German,
Spanish, Italian, etc., face the same alternatives. This has been a notable barrier to the
use of C in Europe, especially in commercial settings (such as banking) where the use
of 7-bit national character sets is pervasive in many countries.
For example, consider this innocent-looking ANSI C and C++ program:

int main(int argc, char* argvl(])

{

if (argc<l || *argv[1l]=='\0') return 0;
printf("Hello, $%s\n",argv[l]);
}

On a standard Danish terminal or printer this program will appear like this:

int main (int argc, char* argv/EA)
&
if (arge<l oo *argvEA=="@®0' ) return 0;
printf ("Hello, $s®n" ,argvﬁEA) ;
a
It is amazing to realize that some people read and write this with ease. | don't think
that is a skill anyone should have to acquire.
The ANSI C committee adopted a partial solution to this problem by defining a set
of trigraphs that allows national characters to be expressed:

# [ { \ ] } " I~

?22= ?272( ?22< 221 ??) 22> 29! 221 ?27?-
This can be useful for interchange of programs, but doesn't make programs readable:

int main(int argc, char* arg??(??))

?7?<
if (arge<l 2?2?1221 *argv??(1??)=="??/0") return O;
printf ("Hello, %??/ n", argv??(1??) );

?2?7>
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Naturally, the real solution to this problem is for C and C++ programmers to buy
equipment that supports both their native language and the characters needed by C
and C++ well. Unfortunately, this appears to be infeasible for some, and the introduc-
tion of new eguipment can be a very dow process. To help programmers stuck with
such equipment and thereby help C++, the C++ standards committee decided to pro-
vide amore readabl e aternative.

The following keywords and digraphs are provided as equivalents to operators
containing national characters:

keywords digraphs
and & | % {
and_eq &= | %> }
bitand & < [
bitor | > ]
compl %: #
not ! %:%: H#H
or | |
or_eq | =
xor”
xor_eq "=
not_eq I-=

| would have preferred %% for # and <> for ! = but %: and not_eq were the best
that the C and C++ committees could compromise on.

We can now write the example like this:

int main(int argc, char* argv<: :>)
<%
if (arge<l or *argv<:1l:>=="??/0') return O;
printf("Hello, %??/n",argv<:1:>);
%
Note that trigraphs are till necessary for putting ' 'missing” characters such as \ into
strings and character constants.

The introduction of the digraphs and the new keywords was most controversial. A
large number of people - mostly people with English as their native language and
with a strong C background - saw no reason to complicate and corrupt C++ for the
benefit of people who were "unwilling to buy decent equipment.” | sympathize with
that position because the digraphs and trigraphs are not pretty, and new keywords are
always a source of incompatibilities. On the other hand, | have had to work on equip-
ment that didn't support my native language, and | have seen people drop C as a pos-
sible programming language in favor of "a language that doesn't use funny charac-
ters." In support of this observation, the IBM representative reported that the absence
of ! in the EBCDIC character set used on IBM mainframes causes frequent and
repeated complaints. | found it interesting to note that even where extended character
sets are available, systems administration issues sometimes force their disuse.
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My guess is that for a transition period of maybe a decade, keywords, digraphs,
and trigraphs is the least bad solution. My hope is that it will help C++ become
accepted in areas that C failed to penetrate, and thus support programmers who have
not been represented in the C and C++ culture.

6.5.3.2 Extended Character Sets

Support for a restricted character set representation for C++ is essentialy backward-
looking. A more interesting and difficult problem is how to support extended charac-
ter sets; that is, how to take advantage of character sets with more characters than
ASCII. There are two distinct problems:

[1] How to support manipulation of extended character sets?

[2] How to alow extended character sets in the source text of a C++ program?
The C standards committee approached the former problem by defining a type
wchar_t to represent multi-byte characters. In addition, a multi-byte string type
wchar_t [] and printf-family I/O for wchar_t were provided. C++ continues
in this direction by making wchar_t a proper type (rather than merely a synonym
for another type defined using typedef asitisin C), by providing a standard string
of wchar_t class called wstring, and by supporting these types in stream 1/O.

This supports only a single "wide character" type. If a programmer needs more
types, say a Japanese character, a string of Japanese characters, a Hebrew character, or
a string of Hebrew characters, there are at least two alternative approaches. One can
map these characters into a common character set large enough to hold both, say, Uni-
code, and write code that handles that using wchar_t. Alternatively one can define
classes for each kind of character and string, say, Jchar, Jstring, Hchar, and
Hstring, and have these classes supply the correct behavior for each. Such classes
ought to be generated from a common template. My experience is that either approach
can work, but that any decision that touches internationalization and multiple charac-
ter sets becomes controversial and emotional faster than any other kind of problem.

The question of if and how to allow extended character sets to be used in C++ pro-
gram text is no less tricky. Naturally, | would like to use the Danish words for apple,
tree, boat, and idand in programs dealing with such concepts. Allowing able, treg
béd, and ¢ in comments is not difficult, and comments in languages other than
English are indeed not uncommon. Allowing extended character sets in identifiers is
more problematic. In principle, I'd like to allow identifiers written in Danish,
Japanese, and Korean in a C or C++ program. There are no serious technical prob-
lems in doing that. In fact, a local C compiler written by Ken Thompson allows all
Unicode characters with no special meaning in C in identifiers.

I worry about portability and comprehension, though. The technical portability
problem can be handled. However, English has an important role as a common lan-
guage for programmers, and I suspect that it would be unwise to abandon that without
serious consideration. To most programmers, a systematic use of Hebrew, Chinese,
Korean, etc., would be a significant barrier to comprehension. Even my native Dan-
ish could cause some headaches for the average English-speaking programmer.



162  Standardization Chapter 6

The C++ committee hasn't made any decisions on this issue so far, but | suspect it
will have to and that every possible resolution will be controversial.



7

Interest and Use

Some languages are designed to solve a problem;
others are designed to prove a point.

- Dennis M. Ritchie

C++ usage — compilers — conferences, books, and journals — tools and
environments — ways of learning C++ — users and applications — com-
mercial competition — alternatives to C++ — expectations and attitudes.

7.1 The Explosion in Interest and Use

C++ was designed to serve users. It was not an academic experiment to design the
perfect programming language, nor was it a commercial product meant to enrich its
developers. Thus, to fulfill its purpose C++ had to have users - and it has:

Date

Estimated number of C++ users

Oct 1979
Oct 1980
Oct 1981
Oct 1982
Oct 1983
Oct 1984
Oct 1985
Oct 1986
Oct 1987
Oct 1988
Oct 1989
Oct 1990
Oct 1991

1

16

38

85

?2+2 (no Cpre count)
??2+50 (no Cpre count)
500

2,000

4,000

15,000

50,000

150,000

400,000
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In other words, the C++ user population on average doubled every seven and a half
months during these twelve years. These are conservative figures. C++ users have
never been easy to count. First, there are implementations such as GNU's G++ and
Cfront shipped to universities for which no meaningful records can be kept. Second,
many companies - both tools suppliers and end-users - consider the number of their
users and the kind of work they do secret. However, | aways had many friends, col-
leagues, contacts, and compiler suppliers who were willing to trust me with figures as
long as | used them in aresponsible manner. This enabled me to estimate the number
of C++ users. These estimates were created by taking the number of users reported to
me or estimated based on personal experience, rounding them all down, adding them,
and then rounding down again. These numbers are the estimates made at the time and
are not adjusted in any way. To support the claim that these figures are conservative,
| can mention that Borland, the largest single C++ compiler supplier, publicly stated
that it had shipped 500,000 compilers by October 1991. That figure is plausible and
also credible because Borland is a public company.

The number of C++ users has now reached the point where | have no reasonable
way of counting them. | don't think | could determine the current number of C++
users to the nearest 100,000. Public figures show that well over 1,000,000 C++ com-
pilers had been sold by late 1992.

7.1.1 Lack of C++ Marketing

To me, the most surprising thing about these numbers is that early users were gained
without the benefit of traditional marketing (87.4). Instead, various forms of elec-
tronic communication played a crucial role in this. In the early years, most distribu-
tion and all support was done using email. Relatively early on, newsgroups dedicated
to C++ were created by users. This intensive use of networks allowed a wide dissemi-
nation of information about the language, techniques, and the current state of tools.
These days this is fairly ordinary, but in 1981 it was relatively new. | suspect C++
was the first major language to take this path.

Later, more conventional forms of communication and marketing arose. After
AT&T released Cfront 10, some resellers, notably John Carolan's Glockenspidl in
Ireland and their US distributor Oasys (later part of Green Hills), started some mini-
mal advertising in 1986. When independently developed C++ compilers such as Ore-
gon Software's C++ Compiler and Zortech's C++ Compiler appeared, C++ became a
common sight in ads (from about 1988).

7.1.2 Conferences

In 1987, David Yost of USENIX, the UNIX Users association, took the initiative to
hold the first conference specifically devoted to C++. Because David wasn't quite
sure if enough people were interested, the conference was called a "workshop" and
David told me privately that "if not enough people sign up, we have to cancel." He
wouldn't tell me what "enough people" meant, but | suspect a number in the region
of 30. David Yost selected Keith Gorlen from the National Institutes of Health as the
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program chairman and Keith contacted me and others, collected email addresses of
interesting projects we had heard about and emailed calls for papers. In the end, 30
papers were accepted, and 214 people turned up in SantaFe, NM in November 1987.

The Santa Fe conference set a good example for future conferences with a mix of
papers on applications, programming and teaching techniques, ideas for improve-
ments to the language, libraries, and implementation techniques. Notably for a
USENIX conference, there were papers on C++ on the Apple Macintosh, OS/2, the
Connection machine, and for implementing non-UNIX operating systems (for exam-
ple, CLAM [Call, 1987] and Choices [Campbell, 1987]). The NIH library [Gor-
len,1987] and the Interviews library [Linton, 1987] aso made their public debuts in
Santa Fe. An early version of what became Cfront 2.0 was demonstrated and | gave
the first public presentation of its features [Stroustrup, 1987c]. The USENIX C++ con-
ferences continue to be the primary technically and academically oriented C++ confer-
ence. The proceedings from these conferences are among the best readings about C++
and its use.

The Santa Fe conference was meant to be a workshop and because of the intensity
of the discussions, it actually was a workshop despite the 200 participants. It was
obvious, however, that at the next conference the experts would be drowned by the
novices and by people trying to figure out what C++ was. That would make a deep
and open technical discussion quite difficult to achieve; tutorial and commercial con-
cerns would dominate. At the suggestion of Andrew Koenig, an "implementers
workshop" was tagged on to the 1988 USENIX C++ conference in Denver. After the
conference, a busload of conference speakers, C++ implementers, etc., set off from
Denver to Estes Park for a day's animated discussion. In particular, the ideas of
static member functions (§813.4) and const member functions (813.3) were so
positively accepted that | decided to make these features part of Cfront 2.0, which was
still delayed due to internal AT&T politics (83.3.4). At my urging, Mike Miller pre-
sented a paper [Miller, 1988] that led to the first serious public discussion of exception
handling in C++.

In addition to the USENIX C++ conferences, there are now many commercial and
semi-commercial conferences devoted to C++, to C including C++, and to object-
oriented programming including C++. In Europe, the Association of C and C++ Users
(ACCU) are also arranges conferences.

7.1.3 Journals and Books

By mid-1992 there were more than 100 books on C++ available in English aone and
both trandations and locally written books available in Chinese, Danish, French, Ger-
man, Italian, Japanese, Russian, etc. Naturaly, the quality varies enormously. | am
pleased to find my books trandated into ten languages so far.

The first journal devoted to C++, The C++ Report, started appearing in January
1989 with Rob Murray as its editor. A larger and glossier quarterly The C++ Journal
appeared in the spring of 1991 with Livlieen Sing as editor. In addition, there are sev-
eral newdetters controlled by C++ tools suppliers, and many journals such as
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Computer Language, The Journal of Object-Oriented Programming (JOOP), Dr.
Dobbs Journal, The C Users Journal, and .EXE run regular columns or features on
C++. Andrew Koenig's column in JOOP is particularly consistent in its quality and
lack of hype. The set of publications that discuss C++-related issues and their edito-
rial policies change relatively fast. My purpose in mentioning journals, conferences,
compilers, tools, etc., is not to give an up-to-date "consumer survey," but to illustrate
the breadth of the early C++ community.

Newsgroups and bulletin boards such as comp.lang.c++ on usenet and c.plus.plus
on BIX aso produced tens of thousands of messages over the years to the delight and
despair of their readers. Keeping up with what is written about C++ is currently more
than a full-timejob.

7.1.4 Compilers

The Santa Fe conference (87.1.2) marked the announcement of the second wave of
C++ implementations. Steve Dewhurst described the architecture of a compiler he
and others were building in AT&T's Summit facility. Mike Ball presented some
ideas for what became the TauMetric C++ compiler (more often known as the Oregon
Software C++ compiler) that he and Steve Clamage were writing in San Diego. Mike
Tiemann gave a most animated and interesting presentation of how the GNU C++
compiler he was building would do just about everything and put al other C++ com-
piler writers out of business. The new AT& T C++ compiler never materialized; GNU
C++ version 113 was first released in December 1987; and TauMetric C++ first
shipped in January 1988.

Until June 1988, al C++ compilers on PCs were Cfront ports. Then Zortech
started shipping their compiler developed by Walter Bright in Seattle. The appear-
ance of the Zortech compiler made C++ "real" for many PC-oriented people for the
first time. More conservative people reserved judgment until the Borland C++ com-
piler was released in May 1990 or even until Microsoft's C++ compiler emerged in
March 1992. DEC released their first independently developed C++ compiler in
February 1992, and IBM released their first independently developed C++ compiler in
May 1992. There are now more than a dozen independently developed C++ compil-
ers.

In addition to these compilers, Cfront ports seems to be everywhere. In particular,
Sun, Hewlett-Packard, Centerline, ParcPlace, Glockenspiel, and Comeau Computing
have shipped Cfront-based products onjust about every platform.

7.1.5 Tools and Environments

C++ was designed to be a viable language in a tool-poor environment. This was
partly a necessity because of the aimost complete lack of resources in the early years
and the relative poverty later on. It was also a conscious decision to allow simple
implementations and, in particular, smple porting of implementations.

C++ programming environments that are a match for the environments routinely
supplied with other object-oriented languages are now emerging. For example,
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ObjectWorks for C++ from ParcPlace is essentially a Smalltalk program development
environment adapted for C++, and Centerline C++ (formerly Saber C++) is an
interpreter-based C++ environment inspired by the Interlisp environment. This gives
C++ programmers the option of using the more whizzy, more expensive, and often
more productive environments that have previously only been available for other lan-
guages, as research toys, or both. An environment is a framework in which tools can
cooperate. There is now a host of such environments for C++. Most C++ implemen-
tations on PCs are compilers embedded in a framework of editors, tools, file systems,
standard libraries, etc. MacApp and the Mac MPW is the Apple Mac version of that,
ET++ is a public domain version in the style of the MacApp. Lucid's Energize and
Hewlett-Packard's Softbench are yet other examples.

Though sophisticated beyond what has been generally used for C, these environ-
ments are only primitive forerunners of much more advanced systems. A well-written
C++ program is a vast reservoir of information waiting to be used. Current tools tend
to focus on syntactic aspects of the language, on the run-time properties of an execu-
tion, and on atextual view of the program. To deliver the full benefits of the C++ lan-
guage, a programming environment must understand and use the full type system and
escape the simple files-and-characters view of the static program representation. It
must also be able to associate run-time information with the static structure of a pro-
gram in a coherent manner. Naturally, such an environment must also scale to handle
the large programs (for example, 500,000 lines of C++) where tools are of the greatest
importance.

Several such systems are under development. |I'm personaly deeply involved
with one such project [Murray,1992] [Koenig,1992]. | think a cavest is in place,
though. A programming environment can be used by a supplier to lock users into a
closed world of features, libraries, tools, and work patterns that cannot be easily trans-
ferred to other systems. Thus a user can become overly dependent on a single sup-
plier and deprived of the opportunity to use machine architectures, libraries, data-
bases, etc., that that supplier is disinclined to support. One of my major aims for C++
was to give users a choice of a variety of systems; a program development environ-
ment can be designed to compromise that am, but it doesn't have to
[Stroustrup,1987d]:

"Care must be taken to ensure that program source can be cost-effectively trans-

ferred between different such environments."

In the same way as | see no hope for a single, grand, standard library, | see no hope
for a single standard C++ software development environment [Stroustrup,1987d]:

"'For C++ at least, there will aways be severa different development and execu-

tion environments, and there will be radical differences between such environ-

ments. It would be unrealistic to expect a common execution environment for,
say, an Intel 80286 and a Cray XMP, and equally unrealistic to expect a common
program development environment for an individual researcher and for a team of

200 programmers engaged in large-scale development. It is aso clear, however,

that many techniques can be used to enhance both kinds of environments and that

one must strive to exploit commonality wherever it makes sense."
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A multiplicity of libraries, run-time environments, and development environments are
essential to support the range of C++ applications. This view guided the design of
C++ as early as 1987; in fact, it is older yet. Its roots are in the view of C++ as a
general-purpose language (81.1, 84.2).

7.2 Teaching and Learning C++

The growth and nature of C++ use have been strongly influenced by the way C++ is
learned. It follows that it can be hard to understand C++ without some insight into the
way it can be taught and learned. Aspects of C++'s rapid growth can be incomprehen-
sible without such insight.

Thoughts about how C++ could be taught and used effectively by relative novices
influenced the design of C++ from the earliest days. | did alot of teaching - at least |
did alot of teaching for someone who is aresearcher rather than a professional educa-
tor. My successes and failures in getting my ideas across and in seeing the real pro-
grams written by people | and others had taught strongly influenced the design of
CHt.

After a few years, an approach that emphasized concepts up front followed by an
emphasis on the relationship between the concepts and the main language features
emerged. Details of individual language features were left for people to learn if and
when they needed to know them. Where that approach was found not to work, the
language was modified to support it. The net effect was that the language grew to be
a better tool for design.

The people | worked with and the people | taught tended to be professional pro-
grammers and designers who needed to learn on the job rather than taking weeks or
months out of their lives to learn the new techniques. From this came much of the
desire to design C++ so that it can be learned and its features adopted gradually. C++
is organized such that you can learn its concepts in a roughly linear order and gain
practical benefits along the way. Importantly, you can gain benefits roughly in pro-
portion to the effort expended.

| think the practical concern underlying many discussions about programming lan-
guages, language features, styles of programming, etc., has more to do with education
than with programming language features as such. For many, the key question is:

Given that | don't have much time to learn new techniques
and concepts, how do | start using C++ effectively?

If the answer for some other language is more satisfactory than for C++, that language
will often be chosen because at this stage programmers usually have a choice (as they
ought to have). Inearly 1993, lanswered the question on comp.lang.c++ likethis:
"It is clear that to use C++ ''best" in an arbitrary situation you need a deep under-
standing of many concepts and techniques, but that can only be achieved through
years of study and experiment. It is little help to tell a novice (a novice with C++,
typically not a novice with programming in genera), first to gain a thorough
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understanding of C, Smalltalk, CLOS, Pascal, ML, Eiffd, assembler, capability-
based systems, OODMBSs, program verification techniques, etc., and then apply
the lessons learned to C++ on his or her next project. All of those topics are wor-
thy of study and would - in the long run - help, but practical programmers (and
students) cannot take years off from whatever they are doing for a comprehensive
study of programming languages and techniques.

On the other hand, most novices understand that ''alittle knowledge is a dan-
gerous thing" and would like some assurance that the little they can afford time to
learn before/while starting their next project will be of help and not a distraction or
a hindrance to the success of that project. They would also like to be confident
that the little new they can absorb immediately can be part of a path that can lead
to the more comprehensive understanding actually desired rather than an isolated
skill leading nowhere further.

Naturally, more than one approach can fulfill these criteria and exactly which
to choose depends on the individual's background, immediate needs, and the time
available. | think many educators, trainers, and posters to the net underestimate the
importance of this: &fter all, it appears so much more cost effective - and easier -
to "educate" people in large batches rather than bothering with individuals.

Consider afew common questions:

| don't know C or C++, should | learn C first?

| want to do OOP, should | learn Smalltalk before C++?
Should | start using C++ as an OOPL or as a better C?
How long does it take to learn C++?

I don't claim to have the only answers to these questions. As | said, the "right"
answer depends on the circumstances. Most C++ textbook writers, teachers, and
programmers have their own answers. My answers are based on years of pro-
gramming in C++ and other languages, teaching short C++ design and program-
ming courses (mainly to professional programmers), consulting about the intro-
duction of and use of C++, discussing C++, and generally thinking about program-
ming, design, and C++.

| don't know C or C++, should | learn C first? No. Learn C++ first. The C
subset of C++ is easier to learn for C/C++ novices and easier to use than C itsdf.
The reason is that C++ provides better guarantees than C (through stronger type
checking). In addition, C++ provides many minor features, such as operator new,
that are notationally more convenient and less error-prone than their C alterna
tives. Thus, if you plan to learn C and C++ (or just C++), you shouldn't take the
detour through C. To use C well, you need to know tricks and techniques that
aren't anywhere near as important or common in C++ as they are in C. Good C
textbooks tend (reasonably enough) to emphasize the techniques that you will
need for completing major projects in C. Good C++ textbooks, on the other hand,
emphasize techniques and features that lead to the use of C++ for data abstraction
and object-oriented programming. Knowing the C++ constructs, their (lower-
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level) C aternatives are trivially learned (if necessary).

To show my inclinations: to learn C, use [Kernighan,1988] as the primary text-
book; to learn C++, use [2nd]. Both books have the advantage of combining a
tutorial presentation of language features and techniques with a complete refer-
ence manual. Both describe their respective languages rather than particular
implementations and neither attempts to describe particular libraries shipped with
particular implementations.

There are many other good textbooks and many other styles of presentation,
but these are my favorites for comprehension of concepts and styles. It is dways
wise to look carefully at at least two sources of information to compensate for bias
and possible shortcomings.

| want to do OOP, should | learn Smalltalk before C++? No. If you plan
to use C++, learn C++. Languages such as C++, Smalltalk, Simula, CLOS, Eiffd,
etc., each have their own view of the key notions of abstraction and inheritance
and each supports them in dightly different ways to support different notions of
design. Learning Smalltalk will certainly teach you valuable lessons, but it will
not teach you how to write programs in C++. In fact, unless you have the time to
learn and digest both the Smalltalk and the C++ concepts and techniques, using
Smalltalk as alearning tool can lead to poor C++ designs.

Naturaly, learning both C++ and Smalltalk so that you can draw from a wider
fidd of experience and examples is the ideal, but people who haven't taken the
time to digest al the new ideas often end up "writing Smalltalk in C++," that is,
applying Smalltalk design notions that don't fit well in C++. This can be as sub-
optimal as writing C or Fortran in C++.

One reason often given for learning Smalltalk is that it is "pure" and thus
forces people to think and program "object-oriented.” | will not go into the dis-
cussion of "purity" beyond mentioning that | think that a general-purpose pro-
gramming language ought to and can support more than one programming style
(paradigm).

The point here is that styles that are appropriate and well supported in
Smalltalk are not necessarily appropriate for C++. In particular, a slavish follow-
ing of Smalltalk style in C++ leads to inefficient, ugly, and hard-to-maintain C++
programs. The reason is that good C++ requires design that takes advantage of
C++'s dtatic type system rather than fights it. Smalltalk supports a dynamic type
system (only) and that view tranglated into C++ leads to extensive unsafe and ugly
casting.

| consider most casts in C++ programs signs of poor design. Some casts are
essential, but most aren't. In my experience, old-time C programmers using C++
and C++ programmers introduced to OOP through Smalltalk are among the heavi-
est users of casts of the kind that could have been avoided by more careful design.

In addition, Smalltalk encourages people to see inheritance as the sole or at
least the primary way of organizing programs and to organize classes into single-
rooted hierarchies. In C++, classes are types and inheritance is by no means the
only means of organizing programs. In particular, templates are the primary
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means for representing container classes.

| am also deeply suspicious of arguments proclaiming the need toforce people
to write in an object-oriented style. People who don't want to learn usually cannot
be taught with reasonable effort. In my experience there is no shortage of people
who do want to learn, and time and effort are better spent on those. Unless you
manage to demonstrate the principle behind data abstraction and object-oriented
programming, al you'll get is inappropriate "baroque" misuses of the language
features that support these notions - in C++, Smalltalk, or any other language.

See The C++ Programming (2nd Edition) [2nd] and in particular Chapter 12
for a more thorough discussion of the relationship between C++ language features
and design.

Should | start using C++ as an OOPL or as a better C? That depends.
Why do you want to start using C++? The answer to that question ought to deter-
mine the way you approach C++, not "some one-size-fits-all philosophy. In my
experience, the safest bet is to learn C++ bottom-up, that is, first learn the features
C++ provides for traditional procedural programming, the better-C subset, then
learn to use and appreciate the data abstraction features, and then learn to use class
hierarchies to organize sets of related classes.

It is - in my opinion - dangerous to rush through the earlier stages because
there is too high a probability of missing some key point.

For example, an experienced C programmer might consider the better-C subset
of C "well-known" and skip the 100 pages or so of a textbook that describes it.
However, in doing so the C programmer might miss the ability to overload func-
tions, the difference between initialization and assignment, the use of operator
new for allocation, the explanation of references, or some other minor feature in
such a way that it will come back to haunt at a later stage where sufficient new
concepts are in play to complicate matters. If the concepts used in the better-C
subset are known the 100 pages will only take a couple of hours to read and some
details will be interesting and useful. If not, the time spent is essential.

Some people have expressed fear that this "gradual approach” leads people to
write in C-style forever. This is of course a possible outcome, but nhowhere as
likely as proponents of ''pure” languages and proponents of the use of force in
teaching programming like to believe. The key thing to realize is that using C++
well as adata abstraction and/or object-oriented language requires the understand-
ing of afew new concepts that have no direct counterpart in languages such as C
and Pascal.

C++ isn'tjust a new syntax for expressing the same old ideas - at least not for
most programmers. This implies a need for education, rather than mere training.
New concepts have to be learned and mastered through practice. Old and well-
tried habits of work have to be reevaluated. Rather than dashing off and doing
things "the good old way" one must consider new ways - often doing things a
new way will be harder and more time-consuming than the old way when tried for
the first time.

The overwhelming experience is that taking the time and making the effort to
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learn the key data abstraction and object-oriented techniques is worthwhile for
almost al programmers and yields benefits not just in the very long run but also
within three to twelve months. There are benefits in using C++ without making
this effort, but most benefits require the extra effort to learn new concepts -1 won-
der why anyone not willing to make that effort would switch to C++.

When approaching C++ for the first time or for the first time after some time,
take the time to read a good textbook or a few well-chosen articles {The C++
Report and The C++ Journal contain many). You may aso want to look at the
definition or the source code of some major library and consider the techniques
and concepts used. This is also a good idea for people who have used C++ for
some time. Many could do with areview of the concepts and techniques. Much
has happened to C++ and its associated programming and design techniques since
C++ firgt appeared. A quick comparison of the first and the second edition of The
C++ Programming Language should convince anyone of that.

How long does it take to learn C++? Again, that depends. It depends both on
your experience and on what you mean by "learning C++." The syntax and
basics for writing C++ in the better-C style plus defining and using a few simple
classes takes a week or two for most programmers. That's the easy part. The
main difficulty, and the most fun and gain, comes from mastering new design and
programming techniques. Most experienced programmers | have talked with
quote times from a half year to one and a haf years before becoming really com-
fortable with C++ and the key data abstraction and object-oriented techniques it
supports. That assumes that they learn on thejob and stay productive - usually by
programming in a "less adventurous' style of C++ during that period. If you
could devote full time to learning C++, you would be comfortable faster, but with-
out actual application of the new ideas on rea projects that degree of comfort
could be misleading. Object-oriented programming and object-oriented design are
essentially practical rather than theoretical disciplines. Unapplied or applied only
to toy examples, these ideas can become dangerous "religions."

Note that learning C++ is then primarily learning programming and design
techniques, not language details. Having worked through a good textbook | would
suggest a book on design such as [Booch,1991], which has nice longish examples
in five different languages (Ada, CLOS, C++, Smalltalk, and Object Pascal) and is
therefore somewhat immune to the language bigotry that mars some design dis-
cussions!. The parts of the book | like best are the presentation of the design con-
cepts and the example chapters.

Looking at design contrasts sharply with the approach of looking very care-
fully a the details of the definition of C++ - usually using the ARM which con-
tains much useful information, but no information about how to write C++ pro-
grams. A focus on details can be very distracting and lead to poor use of the lan-
guage. You wouldn't try to learn a foreign language from a dictionary and

t Booch's second edition [Booch,1993] uses C++ examples throughout.
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grammar, would you?

When learning C++, it is essential to keep the key design notions in mind so
that you don't get lost in the language-technical details. That done, learning and
using C++ can be both fun and productive. A little C++ can lead to significant
benefits compared to C; further efforts to understand data abstraction and object-
oriented techniques yield further benefits."

This view is biased by the current state of affairs in tools and libraries. Given a more
protective environment (for example, including extensive default run-time checks)
and a small well-defined foundation library, you can move to the more adventurous
uses of C++ earlier. This would allow a greater shift of the focus from C++ language
features to the design and programming techniques C++ supports.

It is important to divert interest from syntax and the minute language-technical
details where some long-time programmers like to poke around. Often, such interest
is indistinguishable from an unwillingness to learn new programming techniques.

Similarly, in every course and on every project there is someone who just cannot
believe that C++ features can be affordable and therefore sticks to the familiar and
trusted C subset for future work. Only some actual numbers on performance of indi-
vidual C++ features and of systems written in C++ (for example, [Russo,1988]
[Russo,1990] [Keffer,1992]) have any hope of overcoming strongly held opinions to
the effect that facilities more convenient than C's must be unaffordable. Given the
amount of hype and the number of unfulfilled promises in the languages and tools
area people ought to be skeptical and demand evidence.

Every course and project also has someone who is convinced that efficiency
doesn't matter and proceeds to design systems of a generality that implies visible
delays on even the most up-to-date hardware. Unfortunately, such delays are rarely
noticeable for the toy programs people write while learning C++, so the problems with
that attitude tend to be postponed until real projects. 1'm still looking for a simple, yet
realistic, problem that'll bring a good workstation to its knees when solved in an
overly general way. Such a problem would allow me to demonstrate the value of lean
designs and thus counteract excess enthusiasm and wishful thinking in the way perfor-
mance figures counteract excess caution and conservatism.

7.3 Users and Applications

My view of what C++ was used for and what else it might be applied to affected its
evolution. The growth of C++ features is primarily a response to such real and imag-
ined needs.

One aspect of C++ usage has repeatedly reasserted itself in my mind: a dispropor-
tionate number of C++ applications seemed to be odd in some way. This may of
course simply reflect that unusual applications are more interesting to discuss, but |
suspect a more fundamenta reason. C++'s strength is in its flexibility, efficiency, and
portability. This makes it a strong candidate for projects involving unusual hardware,
unusual operating environments, or interfacing with several different languages. An
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example of such a project is a Wall Street system that needed to run on mainframes
cooperating with COBOL code, on workstations cooperating with Fortran code, on
PCs cooperating with C code, and on the network connecting all of them.

| think this reflects that C++ has been at the leading edge of industrial production
code. In this, C++'s focus differs from languages with a bias towards experimental
use - be it industrial or academic - or teaching. Naturally, C++ has been extensively
used for experimental and exploratory work as well as for educational uses. However,
its role in production code has typically been the deciding factor in design decisions.

7.3.1 Early Users

The early world of C with Classes and C++ was a small one characterized by a high
degree of personal contacts that allowed a thorough exchange of ideas and a rapid
response to problems. Thus, | could directly examine the problems of the users and
respond with bug fixes to Cfront or the basic libraries and occasionally even with a
language change. As mentioned in §2.14 and 8§3.3.4 these users where mainly, though
not exclusively, researchers and developers at Bell Labs.

7.3.2 Later Users

Unfortunately, many users don't bother to document their experiences. Worse yet,
many organizations treat experience data as state secrets. Consequently, much myth
and misinformation - and in cases even disinformation - about programming lan-
guages and programming techniques compete with genuine data for the attention of
programmers and managers. This leads to widespread replication of effort and repeti-
tion of known mistakes. The purpose of this section is to present afew areas in which
C++ has been used and to encourage developers to document their efforts in a way
that will benefit the C++ community as a whole. My hope is that this will give an
impression of the breadth of use that has influenced the growth of C++. Each of the
areas mentioned represents at least two people's efforts over two years. The largest
project that | have seen documented consists of 5,000,000 lines of C++ developed and
maintained by 200 people over seven years:

Animation, autonomous submersible, billing systems (telecom), bowling alley
control, circuit routing (telecom), CAD/CAM, chemical engineering process simula-
tions, car dealership management, CASE, compilers, control panel software, cyclotron
simulation and data processing, database systems, debuggers, decision support sys-
tems, digital photography processing, digital signa processing, electronic mail,
embroidery machine control, expert systems, factory automation, financia reporting,
flight mission telemetry, foreign exchange dealing (banking), funds transfer (bank-
ing), genealogy search software, gas station pump control and billing, graphics, hard-
ware description, hospital records management, industrial robot control, instruction
set simulation, interactive multi-media, magnetohydrodynamics, medical imaging,
medical monitoring, missile guidance, mortgage company management (banking),
networking, network management and maintenance systems (telecom), network moni-
toring (telecom), operating systems (real-time, distributed, workstation, mainframe,
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"fully object-oriented"), programming environments, superannuation (insurance),
shock-wave physics simulation, slaughterhouse management, SLR camera software,
switching software, test tools, trading systems (banking), transaction processing,
transmissions systems (telecom), transport system fleet management, user-interfaces,
video games, and virtual reality.

7.4 Commercial Competition

Commercial competitors were largely ignored, and the C++ language was developed
according to the original plan, its own internal logic, and the experience of its users.
There was (and is) always much discussion among programmers, in the press, at con-
ferences, and on the electronic bulletin boards about which language "is best" and
which language ' 'will win" in some sort of competition for users. Personaly, | con-
sider much of that debate to be misguided and uninformed, but that doesn't make the
issues less real to a programmer, manager, or professor who has to choose a program-
ming language for his or her next project. For good and bad, people debate program-
ming languages with an almost religious fervor and often consider the choice of pro-
gramming language the most important choice of a project or organization.

Ideally, people would choose the best language for each project and use many lan-
guages in the course of a year. In reality, most people don't have the time to learn a
new language to the point where it is an effective tool often enough to build up exper-
tise in many languages. Because of that, even evaluating a programming language for
an individual programmer or organization becomes a challenging task that is only
rarely done well - and even less often documented in a dispassionate way that would
be useful to others. In addition, organizations (for good and bad reasons) find it
extraordinarily hard to manage mixed-language software development. This problem
is exacerbated by language designers and implementers who don't consider coopera-
tion between code written in their language and other languages important.

To make matters worse, practical programmers need to evaluate a language as a
tool rather than as simply an intellectual achievement. This implies looking at imple-
mentations, tools, various forms of performance, support organizations, libraries, edu-
cational support (books, journals, conferences, teachers, consultants), etc., both at
their current state and their likely short-term development. Looking at the longer term
is usualy too hazardous because of the overpowering amount of commercia hype and
wishful thinking.

In the early years, Modula-2 was by many considered a competitor to C++. How-
ever, until the commercia release of C++ in 1985, C++ could hardly be considered a
competitor to any language, and by then Modula-2 seemed to me to have been largely
outcompeted by C in the US. Later, it was popular to speculate about whether C++ or
Objective C [Cox, 1986] was to be the object-oriented C. Ada was often a possible
choice for organizations who might use C++. In addition, Smalltalk [Goldberg, 1983]
and some object-oriented variant of Lisp [Kiczales,1992] would often be considered
for applications that did not require hard-core systems work or maximum
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performance. Lately, some people have been comparing C++ with Eiffd
[Meyer, 1988] and Modula-3 [Nelson, 1991] for some uses.

7.4.1 Traditional Languages

My personal view is different. The main competitor to C++ was C. The reason that
C++ is the most widely used object-oriented language today is that it was and is the
only language that can consistently match C on C's own turf - and at the same time
offer significant improvements. C++ provides transition paths from C to styles of sys-
tem design and implementation based on a more direct mapping between application-
level concepts and language concepts (usualy caled data abstraction or object-
oriented programming). Secondarily, many organizations that consider a new pro-
gramming language have a tradition for the use of an in-house language (usualy a
Pascal variant) or Fortran. Except for serious scientific computation, these languages
can be considered roughly equivalent to C when compared with C++.

| have a deep respect for the strengths of C that most language experts don't share.
In my opinion, they are too blinded by C's obvious flaws to see its strengths (82.7).
My strategy for dealing with C is simple: Do everything C does, do it as well as C or
better in every way and everywhere C does it; in addition, provide significant services
to real programmers that C doesn't.

Fortran is harder to compete with. It has a dedicated following who - like a large
fraction of C programmers - care little for programming languages or the finer points
of computer science. They simply want to get their work done. That is often a rea
sonable attitude; their intellectual interests are focused el sewhere. Many Fortran com-
pilers are excellent at generating efficient code for high-performance machines and
that is often of crucial importance to Fortran users. The reason is partly Fortran's lax
anti-aliasing rules, partly that inlining of key mathematical subroutines is the norm on
the machines that realy matter, and partly the amount of raw effort and talent
expended on the compilers. C++ has occasionally managed to compete successfully
against Fortran, but rarely head-on in the crucial areas of high-performance scientific
and engineering computation. This will happen. C++ compilers are becoming more
mature and more aggressive in areas such as inlining. Fortran's mature libraries are
also being used directly from C++ programs.

C++ is increasingly being used for numerical and scientific work [Forslund,1990]
[Budge, 1992] [Barton, 1994]. This has given rise to a number of extension proposals.
Generally, these have been inspired by Fortran and haven't been too successful. This
reflects a desire to focus on abstraction mechanisms rather than specific language fea
tures. My hope is that focusing on higher-level features and optimization techniques
will in the long run serve the scientific and numeric community better than simple
addition of low-level Fortran features. | see C++ as alanguage for scientific computa-
tion and would like to support such work better than what is currently provided. The
real questionisnot "if?" but "how?"
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7.4.2 Newer Languages

In the secondary competition between C++ and languages supporting abstraction
mechanisms (that is, object-oriented programming languages and languages support-
ing data abstraction) C++ was during the early years (1984 to 1989) consistently the
underdog as far as marketing was concerned. In particular, AT& T's marketing bud-
get during that period was usually empty and AT& T's total spending on C++ advertis-
ing was about $3,000. Of that, $1,000 were spent to send a plain letter to UNIX
licensees telling them that C++ existed and was for sale. It apparently had no effect.
Another $2,000 was spent on areception for the attendees at the very first C++ confer-
ence in Santa Fe in 1987. That didn't help C++ much either, but at least we enjoyed
the party. At the firss OOPSLA conference, the AT& T C++ people could afford only
the smallest booth available. This booth was staffed by volunteers using a blackboard
as an affordable alternative to computers and a sign-up sheet for copies of technical
papers as an alternative to glossy handouts. We thought of making some C++ buttons,
but couldn't find funds.

To this day, most of AT& T's vigibility in the C++ arenarelies on Bell Labs' tradi-
tional policy of encouraging developers and researchers to give talks, write papers,
and attend conferences rather than on any deliberate policy to promote C++. Within
AT&T, C++ was aso a grass-roots movement without money or management clout.
Naturally, coming from AT&T Bell Labs helps C++, but that help is earned the hard
way by surviving in alarge-company environment.

In competition with newer languages, C++'s fundamenta strength is its ability to
operate in a traditional environment (social and computer-wise), its run-time and
space efficiency, the flexibility of its class concept, its low price, and its non-
proprietary nature. Its weaknesses are some of the uglier parts inherited from C, its
lack of spectacular new features (such as built-in database support), its lack of spec-
tacular program development environments (only lately have the kind of environ-
ments that people take for granted with Smalltalk and Lisp become available for C++;
see §7.1.5), its lack of standard libraries (only lately have major libraries become
widely available for C++ - and they are not "standard;" see 88.4), and its lack of
salesmen to balance the efforts of richer competitors. With C++'s recent dominance
in the market the last factor has disappeared. Some C++ salesmen will undoubtedly
embarrass the C++ community by emulating some of the sleazy tricks and unscrupu-
lous practices that salesmen and admen have used to attempt to derail C++'s progress.

In competition with traditional languages, C++'s inheritance mechanism was a
major plus. In competition with languages with inheritance, C++'s static type check-
ing was a mgjor plus. Of the languages mentioned, only Eiffel and Modula-3 com-
bine the two in a way similar to C++. The revision of Ada, Ada9X, aso provides
inheritance.

C++ was designed to be a systems programming language and a language for
applications that had a large systems-like component. This was the area my friends
and | knew well. The decision not to compromise C++'s strengths in this area to
broaden its appeal has been crucia in its success. Only time will tell if this has also
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compromised its ability to appeal to an even larger audience. | would not consider
that a tragedy because | am not among those who think that a single language should
be al things to al people. C++ aready serves the community it was designed for
well. However, | suspect that through the design of libraries, C++'s appeal will be
very wide (89.3).

7.4.3 Expectations and Attitudes

People often express surprise that AT&T alows others to implement C++. That
shows ignorance of both law and AT&T's aims. Once the C++ reference manua
[Stroustrup,1984] was published, nothing could prevent anyone from writing an
implementation. Further, AT&T didn't just allow others to enter the growing market
for C++ implementations, tools, education, etc., it welcomed and encouraged them.
The fact that most people miss is smply that AT&T is a much larger consumer of
programming products than it is a producer. Consequently, AT&T greatly benefits
from the efforts of "competitors" in the C++ field.

No company language could succeed on the scale AT& T would like C++ to suc-
ceed. A proper implementation, tools, library, and education infrastructure is smply
too costly for a single organization - however large - to afford. A company language
would also tend to reflect company policy and politics, which could impede its ability
to survive in alarger, more open, and freer world. In all, | suspect that any language
that can survive both the internal strains of Bell Labs politics and the viciousness of
the open market can't be al bad - even if it is unlikely to follow the dictates of aca
demic fashion.

Naturally, faceless corporations don't just magically produce policies. Policy is
formulated by people and agreement over policy is reached among people. The pol-
icy for C++ stemmed from ideas prevalent in Bell Lab's Computer Science Research
Center and elsewhere in AT&T. | was active in formulating the ideas as they related
to C++, but | would have had no chance of getting C++ made widely available had
notions of generally available software not been widely accepted.

Obvioudly, not everybody agreed all of the time. | was told that one manager once
had the obvious idea of keeping C++ secret as a ' '‘competitive advantage” for AT&T.
He was dissuaded by another manager who added, "Anyway, the issue is moot
because Bjarne has aready shipped 700 copies of the reference manua out of the
company." Those manuals were of course shipped with al proper permissions and at
the encouragement of my management.

An important factor, both for and against C++, was the willingness of the C++
community to acknowledge C++'s many imperfections. This openness is reassuring
to many who have become cynics from years of experience with the people and prod-
ucts of the software tools industry, but it is also infuriating to perfectionists and a fer-
tile source for fair and not-so-fair criticism of C++. On balance, | think that tradition
of throwing rocks at C++ within the C++ community has been a mgjor advantage. It
kept us honest, kept us busy improving the language and its tools, and kept the expec-
tations of C++ users and would-be users realistic.
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Some have expressed surprise that | discuss "commercial competition" without
reference to specific language features, specific tools, release dates, marketing strate-
gies, surveys, or commercial organizations. Partly, thisis aresult of being burned in
language wars where proponents of various languages argue with religious fervor and
by marketing campaigns where cynics rule. In both cases, intellectual honesty and
facts are not at a premium and "debating” techniques | thought belonged only in
fringe politics abound. Sadly, people often forget that there always will be a need for
avariety of languages, for genuine niche languages, and for experimental languages.
Praise for one language, say for C++, doesn't imply a criticism of all other languages.

More importantly, my discussion of language choices is based on a belief that
individual language features and individual tools are of little importance in the greater
picture and serve only as a focus for pseudo-scientific skirmishes. Some variant of
the law of large numbers is in effect.

All of the languages mentioned here can do the easy part of a project; so can C.
All of the languages mentioned here can do the easy parts of a project more elegantly
than C. Often, that doesn't matter. What matters in the long run is whether al of a
project can be done well in a language and whether al of the main projects that an
organization - be it a company or a university department - encounters over a period
of time can be handled well by that organization using that |language.

The real competition is not a beauty contest between individual language features
or even between complete language specifications, but a contest between user com-
munities in al their aspects, al their diversity, and all their inventiveness. A well-
organized user community united by a grand idea has alocal advantage, but is in the
longer run and in the larger picture at a severe disadvantage.

Elegance can be achieved at an unacceptable cost. The ''elegant” language will
eventually be discarded if the elegance is bought at the cost of restricting the applica-
tion domain, at the expense of run-time or space efficiency, at the cost of restricting
the range of systems a language can be used on, at the cost of techniques too alien for
an organization to absorb, at the cost of dependence on a particular commercial orga
nization, etc., The wide range of C++'s features, the diversity of its user community,
and its ability to handle mundane details well is its real edge. The fact that C++
matches C in run-time efficiency rather than being two, three, or ten times sower also
helps.
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Libraries

Life can only be understood backwards,
but it must be lived forwards.
- Dren Kierkegaard

Library design tradeoffs — aims of library design — language support for
libraries — early C++ libraries — the stream 1/O library — concurrency
support — foundation libraries — persistence and databases — numeric
libraries — speciaized libraries — a standard C++ library.

8.1 Introduction

More often than people realize, designing a library is better than adding a language
feature. Classes can represent almost all the concepts we need. Libraries generally
can't help with syntax, but constructors and operator overloading occasionally come
in handy. Where needed, specia semantics or exceptional performance can be imple-
mented by coding functions in languages other than C++. An example is libraries that
provide high-performance vector operations through (inlined) operator functions that
expand into code tuned to vector-processing hardware.

Since no language can support every desirable feature and because even accepted
extensions take time to implement and deploy, people ought to always consider
libraries as a first choice. Designing libraries is more often than not the most con-
structive outlet for enthusiasm for new facilities. Only if the library route is genuinely
infeasible should the language extension route be followed.
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82 C++ Library Design

A Fortran library is a collection of subroutines, a C library is a collection of functions
with some associated data structures, and a Smalltalk library is a hierarchy rooted
somewhere in the standard Smalltalk class hierarchy. What is a C++ library? Clearly,
a C++ library can be very much like a Fortran, C, or Smalltalk library. It might also
be a set of abstract types with several implementations (813.2.2), a set of templates
(815), or a hybrid. You can imagine further aternatives. The designer of a C++
library has several choices for the basic structure of a library and can even provide
more than one interface style for a single library. For example, alibrary organized as
a st of abstract types might be presented as a set of functions to a C program, and a
library organized as a hierarchy might be presented to clients as a set of handles.

We are obviously faced with an opportunity, but can we manage the resulting
diversity? | think we can. The diversity reflects the diversity of needs in the C++
community. A library supporting high-performance scientific computation has differ-
ent constraints from a library supporting interactive graphics, and both have different
needs from a library that supplies low-level data structures to builders of other
libraries.

C++ evolved to enable this diversity of library architectures and some of the newer
C++ features are designed to ease the coexistence of libraries.

8.2.1 Library Design Tradeoffs

Early C++ libraries often show atendency to mimic design styles found in other lan-
guages. For example, my original task library [Stroustrup, 1980b] [Stroustrup, 1987b]
- the very first C++ library - provided facilities similar to the Simula67 mechanisms
for simulation, the complex arithmetic library [Rose, 1984] provided functions like
those found for floating point arithmetic in the C math library, and Keith Gorlen's
NIH library [Gorlen,1990] provides a C++ analog to the Smalltalk library. New
"'early C++" libraries gtill appear as programmers migrate from other languages and
produce libraries before they have fully absorbed C++ design techniques and appreci-
ate the design tradeoffs possible in C++.

What tradeoffs are there? When answering that question people often focus on
language features: Should | use inline functions? virtua functions? multiple inheri-
tance? single-rooted hierarchies? abstract classes? overloaded operators? That is the
wrong focus. These language features exist to support more fundamental tradeoffs:
Should the design

- Emphasize run-time efficiency?

- Minimize recompilation after a change?

- Maximize portability across platforms?

- Enable users to extend the basic library?

- Allow use without source code available?

- Blend in with existing notations and styles?

- Beusable from code not written in C++?

- Beusable by novices?
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Given answers to these kinds of questions, the answers to the language-level ques-
tions will follow. Modern libraries often provide a variety of classes to allow users to
make such tradeoffs. For example, alibrary may provide a very smple and efficient
string class. In addition, it can also supply a higher-level string class with more facili-
ties and more opportunities for user-modification of its behavior (88.3).

8.2.2 Language Features and Library Building

The C++ class concept and type system is the primary focus for al C++ library design.
Its strengths and weaknesses determine the shape of C++ libraries. My main recom-
mendation to library builders and users is simple: Don't fight the type system.
Against the basic mechanisms of a language, a user can win Pyrrhic victories only.
Elegance, ease of use, and efficiency can only be achieved within the basic framework
of alanguage. If that framework isn't viable for what you want to do, it is time to
consider another programming language.

The basic structure of C++ encourages a strongly-typed style of programming. In
C++, aclassis atype. Therules of inheritance, the abstract class mechanism, and the
template mechanism combine to encourage users to manipulate objects strictly in
accordance with the interfaces they present to their users. To put it more crudely:
Don't break the type system with casts. Casts are necessary for many low-level activ-
ities and occasionaly for mapping from higher-level to lower-level interfaces, but a
library that requires its end users to do extensive casting is imposing an undue and
usually unnecessary burden on them. C's printf family of functions, void*
pointers, unions, and other low-level features are best kept out of library interfaces
because they imply holes in the library's type system.

8.2.3 Managing Library Diversity

You can't just take two libraries and expect them to work together. Many do, but in
general quite afew concerns must be addressed for successful joint use. Some issues
must be addressed by the programmer, some by the library builder, and a few fal to
the language designer.

For years, C++ has been evolving towards a situation where the language provides
sufficient facilities to cope with the basic problems that arise when a user tries to use
two independently-designed libraries. To complement, library providers are begin-
ning to consider multiple library use when they design libraries.

Namespaces address the basic problem of different libraries using the same name
(817.2). Exception handling provides the basis for acommon model of error handling
(816). Templates (815) provide a mechanism for defining containers and algorithms
independent of individual types; such types can then be supplied by users or by other
libraries. Constructors and destructors provide a common model for initialization and
cleanup of objects (8§2.11). Abstract classes provide a mechanism for defining inter-
faces independently of the classes they interface to (813.2.2). Run-time type informa-
tion provides a mechanism for recovering type information that was lost when an
object was passed to alibrary and passed back with less specific type information (as
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abase class) (814.2.1). Naturally, thisisjust one use of these language facilities, but
viewing them as supports for composition of programs out of independently devel-
oped libraries can be enlightening.

Consider multiple inheritance (812.1) in this light: Smalltalk-inspired libraries
often rely on a single "universal" root class. If you have two of those you could be
out of luck, but if the libraries were written for distinct application domains, the sm-
plest form of multiple inheritance sometimes helps:

cl ass GDB_r oot

public G aphi cshject,

publ i ¢ Dat aBaseCbject {};
A problem that cannot be solved that easily arises when the two "universal” base
classes both provide some basic service. For example, both may provide a run-time
type identification mechanism and an object 1/O mechanism. Some such problems
are best solved by factoring out the common facility into a standard library or a lan-
guage feature. Others can be handled by providing functionality in the new common
root. However, merging "‘universal" libraries will never be easy. The best solution
is for library providers to realize that they don't own the whole world and never will,
and that it is in their interest to design their libraries accordingly.

Memory management presents yet another set of problems for library designers in
general and users of multiple librariesin particular (810.7).

8.3 Early Libraries

The very first real code to be written in C with Classes was the task library
[Stroustrup, 1980b] (88.3.2.1), which provides Simula-like concurrency for simula
tion. The first real programs were simulations of network traffic, circuit board layout,
etc., using the task library. The task library is till heavily used today. The standard
C library was available from C++ - without additional overhead or complication -
from day one. So are al other C libraries. Classical data types such as character
strings, range-checked arrays, dynamic arrays, and lists were among the examples
used to design C++ and test its early implementations (82.14).

The early work with container classes such as list and array was severely ham-
pered by the lack of support for a way of expressing parameterized types (89.2.3). In
the absence of proper language support, we had to make do with macros. The best
that can be said for the C preprocessor's macro facilities is that they alowed us to
gain experience with parameterized types and support individual and small group use.

Much of the work on designing classes was done in cooperation with Jonathan
Shopiro who in 1983 produced list and string classes that saw wide use within AT& T
and are the basis for the classes currently found in the "Standard Components’
library that was developed in Bell Labs and sold by USL. The design of these early
libraries interacted directly with the design of the language and in particular with the
design of the overloading mechanisms.

The key aim of these early string and list libraries was to provide relatively simple
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classes that could be used as building blocks in applications and in more ambitious
libraries. Typically, the alternative was hand-written code using C and C++ language
facilities directly, so efficiency in time and space was considered crucial. For this rea-
son, there was a premium on self-contained classes rather than hierarchies, on the
inlining of time-critical operations, and on classes that could be used in traditional
programs without major redesign or retraining of programmers. In particular, no
attempts were made to enable users to modify the operation of these classes by over-
riding virtual functions in derived classes. If a user wanted a more general and modi-
fiable class, it could be written with the "standard" class as a building block. For
example:

class String { // sinple and efficient
...

}s

class My_string { // general and adaptable
String rep;
...

public:
...
virtual void append(const String&);
virtual void append(const My_string&);
...

8.3.1 The Stream 1/O Library

C's printf family of functions is an effective and often convenient 1/0 mechanism.
It is not, however, type-safe or extensible to user-defined types (classes and enumera-
tions). Consequently, | started looking for a type-safe, terse, extensible, and efficient
aternative to the printf family. Part of the inspiration came from the last page and
a haf of the Ada Rationale [Ichbiah,1979], which argues that you cannot have aterse
and type-safe 1/0O library without special language features to support it. | took that as
achallenge. The result was the stream 1/O library that was first implemented in 1984
and presented in [Stroustrup,1985]. Soon &fter, Dave Presotto reimplemented the
stream library to improve performance by bypassing the standard C I/O functions |
had used in the initial implementation and using operating systems facilities directly.
He did this without changing the stream interfaces; in fact, | only learned about the
change from Dave after having used the new implementation for a morning or so.
To introduce stream 1/O, this example was considered:

fprintf(stderr,"x = %s\n",x);

Because fprintf () relies on unchecked arguments that are handled according to
the format string at run time this is not type safe and [Stroustrup,1985]
"had x been a user-defined type like compl ex there would have been no way of
specifying the output format of x in the convenient way used for types ' ‘known to
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printf ()" (for example, %s and %d). The programmer would typically have
defined a separate function for printing complex numbers and then written some-
thing like this:

fprintf(stderr,"x=");
put _conpl ex(stderr, x);
fprintf(stderr,"\n");

Thisisinelegant. It would have been a mgjor annoyance in C++ programs that use
many user-defined types to represent entities that are interesting/critical to an
application.

Type-security and uniform treatment can be achieved by using a single over-
loaded function name for a set of output functions. For example:

put(stderr,"x = ");
put(stderr,x);
put(stderr,"\n");

The type of the argument determines which ''put function" will be invoked for
each argument. However, this is too verbose. The C++ solution, using an output
stream for which « has been defined as a "put to" operator, looks like this:

cerr << "x = " << x << "\n":

where cerr is the standard error output stream (equivalent to the C stderr).
So, if x isan i nt with the value 12 3, this statement would print

X = 123

followed by a newline onto the standard error output stream.

This style can be used as long as x is of a type for which operator « is
defined, and a user can trivially define operator « for a new type. So, if x is of
the user-defined type complex with the value (1,2.4), the statement above
will print

x = (1,2.4)

on cerr.
The stream 1/O facility is implemented exclusively using language features
available to every C++ programmer. Like C, C++ does not have any 1/0O facilities
built into the language. The stream 1/O facility is provided in a library and con-
tains no extra-linguistic magic."
The idea of providing an output operator rather than a named output function was sug-
gested by Doug Mcllroy by analogy with the 1/0O redirection operators in the UNIX
shell ( >, », |, etc.). This requires operators that return their left-hand operand for
use by further operations:
"An operator<< function returns a reference to the ostream it was called for
so that another ostream can be applied to it. For example:
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cerr << "x = << X;

wherex is an i nt, will be interpreted as

(cerr.operator<<("x = ")).operator<<(x);

In particular, this implies that when severa items are printed by a single output

statement, they will be printed in the expected order: left to right.”
Had an ordinary, named function been chosen the user would have been forced to
write code like that last example. Severa operators were considered for input and
output operations:
'"The assignment operator was a candidate for both input and output, but it binds
the wrong way. That is, cout=a=b would be interpreted as cout= (a=b), and
most people seemed to prefer the input operator to be different from the output
operator.

The operators < and > were tried, but the meanings ''less than" and ' 'greater
than" were so firmly implanted in people's minds that the new I/O statements
were for al practical purposes unreadable (this does not appear to be the case for
<< and >>). Apart fromthat, '<' isjust above ', ' on most keyboards and peo-
ple were writing expressions like this:

cout < x , vy, z

Itis not easy to give good error messages for this."

Actually, now we could overload comma (811.5.5) to give the desired meaning, but
that was not possible in C++ as defined in 1984 and would require messy duplication
of output operators.

The c in the names of the standard I/O streams cout, cin, etc., stands for
character, they were designed for character-oriented 1/0.

In connection with Release 2.0, Jerry Schwarz reimplemented and partialy
redesigned the streams library to serve a larger class of applications and to be more
efficient for file /O [Schwarz,1989]. A dignificant improvement was the use of
Andrew Koenig's idea of manipulators [Koenig,1991] [Stroustrup,1991] to control
formatting details such as the precision used for floating point output and the base of
integers. For example:

int i = 1234;
cout << i << ' /1 decimal by default: 1234
<< hex << i << ' ' /1 hexadeci mal : 4d2

<< oct << i << '\n'; /] octal: 2322

Experience with streams was a major reason for the change to the basic type system
and to the overloading rules to adlow char values to be treated as characters rather
than small integers the way they arein C (§11.2.1). For example:
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char ch = 'b';
cout << 'a' << ch;

would in Release 10 output a string of digits reflecting the integer values of the char-
acters a and b, whereas Release 2.0 outputs ab as one would expect.

The iostreams shipped with Release 2.0 of Cfront became the model for iostream
implementations shipped by other suppliers and for the iostream library that is part of
the upcoming standard (88.5).

8.3.2 Concurrency Support

Concurrency support has aways been a fertile source for libraries and extensions.
One reason has been the firm conviction by pundits that multi-processor systems will
soon be much more common. As far as | canjudge, this has been the current wisdom
for at least 20 years.

Multi-processor systems are becoming more common, but so are amazingly fast
single-processors. This implies the need for a least two forms of concurrency:
multi-threading within a single processor, and multi-processing with several proces-
sors. In addition, networking (both WAN and LAN) imposes its own demands and
special-purpose architectures abound. Because of this diversity, | recommend paral-
lelism be represented by libraries within C++ rather than as a genera language fea
ture. Such a feature, say something like Ada's tasks, would be inconvenient for
amost all users.

Itis possible to design concurrency support libraries that approach built-in concur-
rency support both in convenience and efficiency. By relying on libraries, you can
support a variety of concurrency models, though, and thus serve the users that need
those different models better than can be done by a single built-in concurrency model.
| expect this will be the direction taken by most people and that the portability prob-
lems that arise when several concurrency-support libraries are used within the com-
munity can be dealt with by athin layer of interface classes.

Examples of concurrency support libraries can be found in [Stroustrup, 1980b],
[Shopiro,1987], [Faust,1990], and [Parrington,1990]. Examples of language exten-
sions supporting some form of concurrency are Concurrent C++ [Gehani,1988], Com-
positional C++ [Chandy,1993], and Micro C++ [Buhr,1992]. In addition, proprietary
threads and lightweight process packages abound.

8.3.2.1 A Task Example

As an example of a concurrent program expressed using mechanisms presented
through a library, let me show Eratosthenes sieve for finding prime numbers using
one task per prime number. The example uses the queues from the task library
[Stroustrup, 1980b] to carry integers to the filters defined as tasks:

#i ncl ude <task. h>
#i ncl ude <i ostream h>
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class Int_nessage : public object {

inti;

public:
int_nessage(int n) : i(n) {}
int val () { returni; }

b

The task system queues carry messages of classes derived from class object. The
use of the name obj ect proves that this is avery old library. In a modern program,
| would also have wrapped the queues in templates to provide type safety, but here |
retained the style of the early task library uses. Using the task library queues for car-
rying single integers is a bit overblown, but it is easy and the queues ensure proper
synchronizations of put () s and get () s from different tasks. The use of the queues
illustrates how information can be carried around in a simulation or in a system that
doesn't rely on shared memory.

class sieve : public task {
gtail* dest;
public:
sieve(int prine, ghead* source);

b

A class derived from task will run in paralel with other such tasks. The rea work
is done in the task's constructors or in code called from those. In this example, each
seveisatask. A sieve gets a number from an input queue and checks if that number
is divisible by the prime number represented by the sieve. If not, the sieve passes the
number along to the next sieve. If thereisn't a next sieve, we have found a new prime
number and can create a new sieve to represent it:

sieve::sieve(int prinme, ghead* source) : dest(O
{
cout << "prine\t" << prime << '\n';
for(;;) {
I nt_nessage* p = (Int_message*) source->get();
int n = p->val();
if (n%rime) {
if (dest) {
dest - >put (p);
conti nue;

}

/1 prime found: meke new sieve
dest = new qtail;
new si eve(n, dest->head());

}
del ete p;
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A message is created on the free store and deleted by whichever sieve consumes that
message. The tasks run under the control of a scheduler; that is, the task system dif-
fers from a pure co-routine system in which the transfer of control between co-
routines is explicit.

To complete the program we need amain () to create the first sieve:

int main()

{
int n = 2
gtail* q = newqtail;
new si eve(n, g->head()); // make first sieve
for(;:) {
g- >put (new | nt _nessage(++n));
t hi stask->del ay(1); // give sieves a chance to run

}

This program will run until it has completely consumed some system resource. | have
not bothered to program it to die gracefully. This is not an efficient way of calculat-
ing primes. It consumes one task and many task context switches per prime. This
program could be run as a simulation using a single processor and address space
shared between al tasks or as a genuine concurrent program using many processors. |
tested it as a simulation with 10,000 primes/tasks on aDEC VAX. For an even more
amazing variant of Erathostenes's sieve in C++ see [Sethi, 1989].

8.3.2.2 Locking

When dealing with concurrency, the concept of locking is often more fundamental
than the concept of atask. If a programmer can say when exclusive access to some
datais required, there often isn't a need to know exactly what a process, task, thread,
etc., actudly is. Some libraries take advantage of this observation by providing a
standard interface to locking mechanisms. Porting the library to a new architecture
involves implementing this interface correctly for whatever notion of concurrency is
found there. For example:

class Lock {
...

public:
Lock( Real _l ock&); /1 grab | ock
~Lock(); /'l release |ock

}s

void my_fct()

{
Lock I ck(g2lock); // grab lock associated with g2

/Il use q2
}

Releasing the lock in the destructor simplifies code and makes it more reliable. In
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particular, this style interacts nicely with exceptions (816.5). Using this style of lock-
ing, key data structures and policies can be made independent of concurrency details.

84 Other Libraries

Here, | will present only a very short list of other libraries to indicate the diversity of
C++ libraries. Many more libraries exist and several new C++ libraries appear every
month. It seems that one form of the software-components industry that pundits have
promised for years - and bemoaned the lack of - has finally come into existence.

The libraries mentioned here are classified as "other libraries" because they did
not affect the development of C++ significantly. This is not ajudgment on their tech-
nical merit or importance to users. In fact, alibrary builder can often serve users best
by being careful and conservative with the set of language features used. This is one
way of maximizing library portability.

8.4.1 Foundation Libraries

There are two amost orthogonal views of what constitutes a foundation library. What
has been called a horizontal foundation library provides a set of basic classes that sup-
posedly helps every programmer in every application. Typically, the list of such
classes includes basic data structures such as dynamic and checked arrays, lists, asso-
ciative arrays, AVL trees, etc., and also common utility classes such as strings, regular
expressions, date-and-time. Typically, ahorizontal foundation library tries hard to be
portable across execution environments.

A vertical foundation library, on the other hand, aims at providing a complete set
of services for a given environment such as the X Window System, MS Windows,
MacApp, or a set of such environments. Vertical foundation libraries typicaly pro-
vide the basic classes found in a horizontal foundation library, but their emphasis is
on classes for exploiting key features of the chosen environment. To this end, classes
supporting interactive user-interfaces and graphics often dominate. Interfaces to spe-
cific databases can aso be an integral part of such alibrary. Often, the classes of a
vertical library are welded into a common framework in such a way that it becomes
difficult to use part of the library in isolation.

My persona preference is to keep the horizontal and vertical aspects of a founda
tion library independent to maintain simplicity and choice. Other concerns, both tech-
nical and commercial, tug in the direction of integration.

The most significant early foundation libraries were Keith Gorlen's NIH class
library [Gorlen,1990], which provided a Smalltalk-like set of classes, and Mark
Linton's Interviews library [Linton, 1987], which made using the X Window System
convenient from C++. GNU C++ (G++) comes with alibrary designed by Doug Lea
that is distinguished by effective use of abstract base classes [Leg,1993]. The USL
Standards Components [Carroll, 1993] provide a set of efficient concrete types for data
structures and Unix support used mainly in industry. Rogue Wave sdlls a library
caled Tools++, which originated in a set of foundation classes written by Thomas



192 Libraries Chapter 8

Keffer and Bruce Eckel at the University of Washington starting in 1987 [Kef-
fer,1993]. Glockenspiel has for years supplied libraries for various commercial uses
[Dearie, 1990]. Rational ships a C++ version of The Booch Components that was
originaly designed for and implemented in Ada by Grady Booch. Grady Booch and
Mike Vilot designed and implemented the C++ version. The Ada version is 125,000
non-commented source lines compared to the C++ version's 10,000 lines - inheritance
combined with templates can be a very powerful mechanism for organizing libraries
without loss of performance or clarity [Booch, 1993].

8.4.2 Persistence and Databases

Persistence is many different things to different people. Somejust want an object-1/0
package as provided by many libraries, others want a seamless migration of objects
from file to main memory and back, others want versioning and transaction logging,
and others will settle for nothing less than a distributed system with proper concur-
rency control and full support for schema migration. For that reason, | think that per-
sistence must be provided by special libraries, non-standard extensions, and/or third-
party products. | see no hope of standardizing persistence, but the C++ run-time type
identification mechanism contains a few "hooks" deemed useful by people dealing
with persistence (814.2.5).

Both the NIH library and the GNU library provide basic object 1/O mechanisms.
POET is an example of a commercial C++ persistence library. There are about a
dozen object-oriented databases intended for use with C++ and also implemented in
C++. ObjectStore, ONTOS [Cattell,1991], and Versant are examples.

8.4.3 Numeric Libraries

Rogue Wave [Keffer, 1992] and Dyad supply large sets of classes primarily aimed at
scientific users. The basic aim of such libraries is to make nontrivial mathematics
available in aform that is convenient and natural to experts in some scientific or engi-
neering field. Here is an example using the RHALE++ library from Sandia National
Labs which supports mathematical physics:

voi d Deconpose(const double delt, SymTensoré& V,
Tensors R const Tensor& L)
{
Syntensor D = Sym(L);
Anti Tensor W= Anti (L);
Vector z = Dual (V*D);
Vector onega = Dual (W - 2.0*Inverse(V-Tr(V)*0ne)*z;
Anti Tensor QOrega = 0. 5*Dual (onega);

R = Inverse(One-0.5*delt*Onega) * (One+0.5*delt*Onega)*R;
V += del t * Syn( L* V- V* Orega) ;
}

According to [Budge, 1992], "This code is transparent and its underlying class
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libraries are versatile and easy to maintain. A physicist familiar with the polar
decomposition algorithm can make immediate sense of this code fragment without the
need for additional documentation."”

8.4.4 Specialized Libraries

The libraries mentioned above exist primarily to support some general form of pro-
gramming. Libraries that support a specific application area are at least as important
to users. For example, one can find public domain, commercial, and company
libraries that support application areas such as hydrodynamics, molecular biology,
communication network analysis, telephone operator consoles, etc. To many C++
programmers, such libraries are where the real value of C++ manifests itself in terms
of easier programming, fewer programming errors, reduced maintenance, etc. End
users tend never to hear of such libraries; they simply benefit.
Here is an example of a smulation of a circuit switched network [Eick,1991]:

#i nclude <simib. h>

int trunks[] ={ /* ... *I };
double load[] ={ /* ... *I };
class LBA : public Policy { /* ... *I };
mai n()
{
Simsim // event schedul er
si m net wor kf new Net wor k(trunks)); Il create the network
simtraffic(new Traffic(load,3.0)); // traffic matrix
sim policy(new LBA); /1 Lba routing policy

simrun(180); // sinulate 180 m nutes

cout <<si m // output results

}

The classes involved are either SIMLIB library classes or classes that the user has
derived from SIMLIB to define the network, load, and policy for this particular analy-
Sis.

As in the physics example in the previous section, the code makes perfect sense if
and only if you are an expert in the field. In this case, however, the field is so narrow
that the library serves only people in ahighly specialized application area.

Many specialized libraries, such as libraries that support graphics and visuaiza-
tion, are actualy quite general, but this book is not the place to try to enumerate C++
libraries or even to try for a complete classification. The variety of C++ libraries is
mind-boggling.
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85 A Standard Library

Given the bewildering variety of C++ libraries, the question arises: "Which libraries
should be standard?' That is, which libraries should be specified in the C++ standard
as required for every C++ implementation?

First of al, the key libraries now in amost universal use must be standardized.
This means that the exact interface between C++ and the C standard libraries must be
specified and the iostreams library must be specified. In addition, the basic language
support must be specified. That is, we must specify functions such as : : operator
new(size_t) and set_new_handler(), which support the new operator
(810.6), terminate!) and unexpected(), which support exception handling
(816.9), and classes type_info, bad_cast, and bad_typeid, which support
run-time type information (814.2).

Next, the committee must see if it can respond to the common demand for "more
useful and standard classes,” such as string without getting into a mess of design
by committee and without competing with the C++ library industry. Any libraries
beyond the C libraries and iostreams accepted by the committee must be in the nature
of building blocks rather than more ambitious frameworks. The key role of a standard
library is to ease communication between separately-developed, more ambitious
libraries.

With this in mind, the committee has accepted a string class and a wide charac-
ter wstring class and is trying to unify these into a genera string of anything tem-
plate. It also accepted an array class, dynarray [Stal,1993], a template class
bits<N> for fixed-sized sets of bits, and a class bitstring for sets of bits for
which the size can be changed. In addition, the committee has accepted complex
number classes (grandchildren of my original complex class; see §3.3) and looked at
vector classes intended to support numeric/scientific computation. Because the set of
standard classes, their specifications, and even their names are still vigorously
debated, I'll refrain from giving details and examples.

| would like to see list and associative array (map) templates in the standard
library (89.2.3). However, as with Release 10, these classes may be lost to the
urgency of completing the core language in atimely fashion.



9

L ooking Ahead

You cannot bathe in the same river twice.
—Heraclitus

Did C++ succeed a what it was designed for? — is C++ a coherent lan-
guage? — what should have been different? — what should have been
added? — what was the biggest mistake? — is C++ only a bridge? — what
is C++ good for? — what will make C++ much more effective?

9.1 Introduction

This chapter is more speculative and relies more on personal opinions and generaliza-
tions than | like; | much prefer to present completed work and experience. However,
this chapter answers common questions and presents issues that invariably come up
when the design of C++ is discussed. The chapter consists of three related parts:
- A retrospective trying to assess where C++ currently is relative to its ams and
relative to where it might have been (89.2).
- A look at probable future problems for software development and program-
ming languages to see how C++ might address them and fit into a changed
world (89.3).
- Alook at some areas where C++ and its use can be significantly improved to
make C++ abetter tool (§9.4).
Discussing future developments is always hazardous, but it is a necessary hazard:
Language design must in part anticipate future problems.
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9.2 Retrospective

It is often claimed that hindsight is an exact science. Itisnot. The claim is based on
the false assumptions that we know all relevant facts about the past, that we know the
current state of affairs, and that we have a suitably detached point of view from which
to judge. Typically, none of these conditions hold. Thus, a retrospective on some-
thing as large, complex, and dynamic as a programming language in large-scale use is
not just a statement of fact. Anyway, let me try to stand back and answer some hard
questions:

[1] Did C++ succeed at what it was designed for?

[2] Is C++ acoherent language?

[3] What was the biggest mistake?
Naturally, the replies to these questions are related. My basic answers are "yes,"
"yes," and "not shipping alarger library with Release 1.0."

9.2.1 Did C++ succeed at what it was designed for?

"C++ is a general-purpose programming language designed to make programming
more enjoyable for the serious programmer" [Stroustrup, 1986b]. In this goal, C++
clearly succeeded. More specificaly, it succeeded by enabling reasonably educated
and experienced programmers to write programs at a higher level of abstraction ("'just
like in Simula") without loss of efficiency compared to C. It allowed this for applica-
tions that were simultaneously demanding in time, space, inherent complexity, and
constraints from the execution environment.

More generally, C++ made object-oriented programming and data abstraction
available to the community of software developers that until then had considered such
techniques and the languages that supported them such as Smalltalk, Clu, Simula,
Ada, OO Lisp dialects, etc., with disdain and even scorn: "expensive toys unfit for
real problems."” C++ did three things to overcome this formidable barrier:

[1] C++ produced code with run-time and space characteristics that competed
head-on with the perceived leader in that field: C. Anything that matches or
beats C must be fast enough. Anything that doesn't, can and will - out of
necessity or mere prejudice - be ignored. It produced such performance from
code relying on data abstraction and object-oriented techniques as well as for
traditionally organized code.

[2] C++ dlowed such code to be integrated into conventional systems and to be
produced on traditional systems. A conventional degree of portability was
essential. So was the ability to coexist with existing code and with traditional
tools, such as debuggers and editors.

[3] C++ alowed a gradua transition to these new programming techniques. It
takes time to learn new techniques. Companies simply cannot afford to have
significant numbers of programmers unproductive while they are learning.
Nor can they afford projects that fail because programmers overenthusiasti-
cally misapply partially-mastered new ideas.

C++ made abject-oriented programming and data abstraction cheap and accessible.
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In succeeding, C++ didn't just help its own user community. It also provided a
major impetus to languages that support different aspects of object-oriented program-
ming and data abstraction. C++ isn't everything to all people and doesn't deliver on
every promise ever made about some language or other. It wasn't meant to, and |
didn't make extravagant promises. However, C++ did deliver on its own promises
often enough to break down the wall of disbelief that stood in the way of al languages
that allowed programmers to work at a higher level of abstraction. By doing so, C++
opened many doors for itself and also for languages whose supporters tend to see C++
as a competitor only. In addition, C++ helped users of other languages by providing a
strong incentive to implementers to improve the performance and flexibility of those
languages.

9.2.2 Is C++ a Coherent L anguage?

Basically, | am happy with the language, and quite afew users agree. There are many
details 1'd like to improve if |1 could. However, the fundamental concept of a
statically-typed language relying on classes with virtual functions and providing facil-
ities for low-level programming is sound. Also, the mgjor features work together in a
mutually supportive fashion.

9.2.2.1 What Should and Could Have Been Different?

What would be a better language than C++ for the things C++ is meant for? Consider
the first-order decisions (81.1, §82.3, §2.7):

- Use of dtatic type checking and Simula-like classes.

- Clean separation between language and environment.

- C source compatibility (''as close as possible™).

- Clink and layout compatibility (“genuine local variables').

- No reliance on garbage collection.
| still consider static type checking essential for good design and run-time efficiency.
Were | to design a new language for the kind of work done in C++ today, | would
again follow the Simula model of type checking and inheritance, not the Smalltalk or
Lisp models. As | have said many times, "Had | wanted an imitation Smalltalk, |
would have built a much better imitation. Smalltalk is the best Smalltalk around. If
you want Smalltalk, use it" [Stroustrup,1990]. Having both static type checking and
dynamic type identification (for example, in the form of virtual function calls) implies
some difficult tradeoffs compared to languages with only static or only dynamic type
checking. The static and dynamic type models cannot be identical, and there will
therefore be some complexity and inelegance that could be avoided by supporting
only one type model. However, | wouldn't want to write programs with only one
model.

| also still consider a separation between the environment and the language essen-
tial. 1 do not want to use only one language, one set of tools, and one operating sys-
tem. To offer achoice, separation is necessary. However, once the separation exists,
one can provide different environments to suit different tastes and different
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requirements for supportiveness, resource consumption, and portability.

We never have a clean dlate. It is not enough to provide something new; we must
also make it possible for people to make atransition from old tools and idess to new.
Thus, if C hadn't been there for C++ to be almost compatible with, | would have cho-
sen to be almost compatible with some other language. However, any compatibility
requirements imply some ugliness. By building on C, C++ inherited some syntactic
oddities, some rather messy conversion rules for built-in types, etc. These imperfec-
tions have been a continuing hassle, but the alternatives - significant incompatibilities
with C in a C-based language or getting a language built completely from scratch into
widespread use - would have been much more troublesome. In particular, the link
and library compatibility with C has been essential. Link compatibility with C
implies that C++ can link with most other languages because they provide abinding to
code written in C.

Should alanguage have reference semantics for variables (that is, a name is really
a pointer to an object allocated elsewhere), such as in Smalltalk or Modula-3, or true
local variables, such asin C and Pascal? This question is critical. It relates to several
issues such as coexistence with other languages, run-time efficiency, memory man-
agement, and the use of polymorphic types. Simula dodged the question by having
references to class objects (only) and true local variables for objects of built-in types
(only). 1 consider it an open issue whether a language can be designed that provides
the benefits of both references and true local variables without ugliness. Given a
choice between elegance and the benefits of having both references and true local
variables, I'll take the two kinds of variables.

Should a new language support garbage collection directly, say, as Modula-3
does? If so, could C++ have met its goals had it provided garbage collection? Gar-
bage collection is great when you can afford it. Therefore, the option of having gar-
bage collection is clearly desirable. However, garbage collection can be costly in
terms of run time, real-time response, and porting effort (exactly how costly is the
topic of much confused debate). Therefore, being forced to pay for garbage collection
at all times isn't ablessing. C++ alows optional garbage collection [2nd,pp466-468].
Several experiments with garbage-collecting C++ implementations are in progress. |
expect to rely on garbage collection in some, but not al, of my C++ programs within a
couple of years (810.7). However, | am convinced (after reviewing the issue many
times over the years) that had C++ depended on garbage collection, it would have
been stillborn.

9.2.2.2 What Should Have Been Left Out?

Even [Stroustrup,1980] voiced concern that C with Classes might have become too
large. | think ''a smaller language” is number one on any wish list for C++, yet peo-
ple deluge me and the standards committee with extension proposals. | see no magor
part of C++ that could be removed without leaving important techniques unsupported.
Even if we could completely disregard compatibility issues, only a few simplifica
tions of C++'s fundamental mechanisms would be possible. These would primarily
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be in the C subset of C++ - sometimes we forget that C itself is a rather large and
complicated language.

The fundamental reason for the size of C++ is that it supports more than one way
of writing programs, more than one programming paradigm. From one point of view,
C++isredly three languages in one:

- A C-like language (supporting low-level programming)

- An Adalike language (supporting abstract data type techniques)

- A Simulalike language (supporting object-oriented programming)

- What it takes to integrate those features into a coherent whole.

One can write programs in those styles in a language like C aso, but C provides no
direct support for data abstraction or object-oriented programming. C++, on the other
hand, supports several aternatives directly.

There aways is a design choice but in most languages the language designer has
made the choice for you. For C++ | did not; the choice is yours. This flexibility is
naturally distasteful to people who believe that there is exactly one right way of doing
things. It can also scare beginners and teachers who feel that a good language is one
that you can completely understand in a week. C++ is not such alanguage. It was
designed to provide a toolset for professionals, and complaining that there are too
many features is like the "layman" looking into an upholsterer's tool chest and
exclaiming that there couldn't possibly be aneed for al those little hammers.

Every language in nontrivial use grows to meet the needs of its user community'.
This invariably implies an increase of complexity. C++ is part of a trend towards
greater language complexity to deal with the even greater complexity of the program-
ming tasks attempted. If the complexity doesn't appear in the language itsdlf, it
appears in libraries or tools. Examples of languages/systems that have grown enor-
moudly compared to their simpler origins are Ada, Eiffd, Lisp (CLOS), and
Smalltalk. Because of C++'s emphasis on static type checking, much of the increase
in complexity has appeared in the form of language extensions.

C++ was designed for serious programmers and grew to serve them in the increas-
ing large and complex tasks they face. The result can be overwhelming for newcom-
ers, even experienced newcomers. | have tried to minimize the practical effects of
C++'s size by making it possible to learn and use C++ in stages (87.2). Thetraditional
negative performance impact of a large language has also been minimized by avoid-
ing "distributed fat" (84.5).

9.2.2.3 What Should Have Been Added?

As ever, the principle is to add as little as possible. A letter published on behalf of the
extensions working group of the C++ standards committee puts it this way
[Stroustrup, 1992b:
"First, let us try to dissuade you from proposing an extension to the C++ lan-
guage. C++ is aready too large and complicated for our taste and there are mil-
lions of lines of C++ code ''out there" that we endeavor not to break. All changes
to the language must undergo tremendous consideration. Additions to it are
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undertaken with great trepidation. Wherever possible we prefer to see program-
ming techniques and library functions used as alternatives to language extensions.
Many communities of programmers want to see their favorite language con-
struct or library class propagated into C++. Unfortunately, adding useful features
from diverse communities could turn C++ into a set of incoherent features. C++ is
not perfect, but adding features could easily make it worse instead of better."”
So, given that, what features have caused trouble by their absence and which are
under debate so that they might make it into C++ over the next few years? Basically,
the features described in this book (including the ones in Part 1l such as templates,
exceptions, namespaces, and run-time type identification) are enough features for me.
I'd like optional garbage collection too, but | classify that as a quality of implementa-
tion issue rather than a language feature.

9.2.3 What Was The Biggest Mistake?

To my mind, there really is only one contender for the title of Worst Mistake. Release
10 and my first edition [Stroustrup,1986] should have been delayed until a larger
library including some fundamental classes such as singly and doubly linked lists, an
associative array class, a range-checked array class, and a simple string class could
have been included. The absence of those led to everybody reinventing the wheel and
to an unnecessary diversity in the most fundamental classes. It aso led to a serious
diversion of effort. In an attempt to build such fundamenta classes themselves, far
too many new programmers started dabbling with the ' 'advanced" features necessary
to construct good foundation classes before they had mastered the basics of C++.
Also, much effort went into techniques and tools to deal with libraries inherently
flawed by the lack of template support.

Could | have avoided that? In asense, | obviously could have. The original plan
for my book included three library chapters, one on the stream library, one on the con-
tainer classes, and one on the task library. | knew roughly what | wanted. Unfortu-
nately, | was too tired and couldn't do container classes without some form of tem-
plates. The idea of "faking" templates by a preprocessor or an incomplete compiler
hack unfortunately didn't occur to me.

9.3 Only aBridge?

| built C++ as a bridge over which people could pass from traditional programming to
styles relying on data abstraction and object-oriented programming. Does C++ have a
future beyond that? Is C++ only abridge? Once across to aworld where data abstrac-
tion and object-oriented programming are second nature, are the features provided by
C++ valuable by themselves or does its inheritance from C become a fatal liability?
Also, assuming a positive answer, can anything be done for C++ users who don't care
about C compatibility without causing damage to the people who will continue to care
for at least the next decade?

A language exists to help solve problems. If a language is initially successful, it
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will survive as long as people face the kinds of problems it helps them to solve. In
addition, it ought to thrive provided no other language provides significantly better
solutions for that set of problems. Thus, the questions become

- Will the problems C++ helps solve remain real ?

- Will dgnificantly better solutions emerge?

- Will C++ provide good solutions for new problems?
My basic answers are "many will," "slowly," and "yes."

9.3.1 We Need the Bridgefor aLong Time

It will take people along time to reach the level of sophistication and maturity with
object-oriented programming, object-oriented design, etc., that | envisioned. The
migration to C++ will not be complete five years from now. C++'s role as a bridge
and as a vehicle for hybrid design and development will outlast this century. Its role
as avehicle for maintenance and upgrading of old code will last longer still.

It is sobering to realize that in places the move from assembler to C isn't yet com-
plete. In the same way, the move from C to C++ may last for along time. However,
in this lies part of C++'s strength. To those who really need some pure C style, those
styles are readily available and efficient in C++. Supporting those styles - both during
a transition and where they smply are the most appropriate style - is part of C++'s
fundamental aims.

9.3.2 If C++isthe Answer, What is the Question?

There is no one such question. C++ is a general-purpose language - or a least a
multi-purpose one. This implies that for every single specific question, you can con-
struct a language or system that is a better answer than C++. C++'s strength comes
from being a good answer to many questions rather than being the best answer to one
specific question. For example, like C, C++ is an excellent language for low-level
systems work and typically outperforms any other high-level language for this kind of
work. However, for most machine architectures, a good assembly programmer can
produce code that is significantly smaller and faster than a good C++ compiler can.
Usually, this is not significant because the fraction of a complete system where that
difference is important is small, and the system would be unaffordable and unmain-
tainable if written completely in assembler.

| find it hard to imagine an application area for which one couldn't construct a
specialized language better than C++ - and better than any other general-purpose lan-
guage. Thus, the most a general-purpose language can hope for is to be "everybody's
second choice.”

That said, I'll examine some areas where C++ has fundamental strengths:

- Low-level systems programming

- Higher-level systems programming

- Embedded code

- Numeric/scientific computing

- Genera application programming
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These categories are not distinct, nor do they have universally agreed-upon defini-
tions. C++ will remain a good choice in al of these areas; further, any language that
is a good choice will ook a lot like C++ at the level of the fundamental services
offered - though probably not at the syntactic or detailed semantic level. These areas
don't exhaust the kinds of applications in which C++ has been used with success, but
they represent key problems that C++ must address to continue to prosper.

9.3.2.1 Low-level Systems Programming

C++ is the best language available for low-level programming. It combines C's
strengths in this area with the ability to do simple data abstraction at no cost in run-
time and space and to manage larger programs of this sort. No new language is going
to be sufficiently better in this areato replace C++. Systems programming involving a
low-level component will remain an area of strength for C++. In this area, C++ fills
its role as a better C. For years, the only real competitor to C++ in this area will
remain C, and here C++ is the better choice exactly because it is abetter C. | expect
low-level systems programming to slowly - only slowly - decrease in importance and
remain a significant area of strength for C++. For this reason, care must be taken not
to "'improve" the C++ language or C++ implementations to the point where it is only
ahigher-level language.

9.3.2.2 Higher-level Systems Programming

The size and complexity of traditional systems programs are growing rapidly. Exam-
ples are operating system kernels, network managers, compilers, email systems, type-
setting programs, picture and sound manipulation systems, communication systems,
user interfaces, and database systems. Consequently, the traditional emphasis on
low-level efficiency gives way to a concern about overall structure. Efficiency dtill
matters, but it becomes secondary in that it is irrelevant unless the larger systems can
be economically constructed and maintained.

C++'s facilities for data abstraction and object-oriented programming directly
address this concern. Templates, namespaces, and exceptions will become increas-
ingly important to C++ programmers working on these kinds of applications. Isolat-
ing necessary violations of the type system in low-level functions, subsystems, and
libraries will also become more critical. This technique keeps the main application
code type safe and therefore easier to maintain. | expect higher-level systems pro-
gramming to continue to grow in importance for many years and to be an area of
strength for C++.

Many other languages can also serve higher-level systems programming well.
Examples are Ada9X, Eiffel, and Modula-3. Except for support for garbage collec-
tion and concurrency, these languages are roughly equivalent to C++ in the fundamen-
tal mechanisms they offer. Naturally, the quality of individual features and their inte-
gration into alanguage can be discussed forever. Most programmers will have strong
preferences. However, if implementations of sufficient quality become available,
each of these languages can support a wide variety of systems applications. Problems
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unrelated to programming language-technical details, such as management, design
techniques, and programmer education, will dominate development. C++ tends to
have an advantage in run-time efficiency, flexibility, availability, and user community
that gives it a competitive edge.

For some larger systems applications, garbage collection is a magjor advantage; for
others, it is a hindrance. Unless C++ implementations provide optional garbage col-
lection, C++ will suffer a systematic disadvantage in some areas, but I'm confident
that C++ implementations supporting optional garbage collection will become com-
mon.

9.3.2.3 Embedded Systems

One area of systems programming that deserves special mention is embedded code;
that is, programs running on computerized devices such as cameras, cars, rockets, and
telephone switches. | expect this kind of work to increase in importance and to con-
sst of amixture of low-level and higher-level systems programming for which C++ is
most suitable. Different applications and different organizations will create a variety
of demands that a speciaized language will be hard-pressed to meet. Some designs
will rely heavily on exceptions; others will ban them as being too unpredictable. Sim-
ilarly, the requirements for memory management will range from ''no dynamic mem-
ory allowed" to "automatic garbage collection must be used.” In addition, a variety
of different concurrency models will be used. It is important that C++ is a language
rather than a complete system. This allows C++ to fit into specialized systems and to
produce code for specialized execution environments. Being able to run C++ in sepa
rate development environments and in simulators on stock hardware can be essential
for aproject. The fact that C++ programs can be put into ROM has aso been impor-
tant in the past. | have high expectations for C++ in the area of programming comput-
erized gadgets of al sorts. In this area, C++ can again build on C's traditional
strengths.

9.3.2.4 Numeric/Scientific Computing

Numeric/scientific computing is a relatively small area in terms of number of pro-
grammers, but it is a very interesting and important one. | see a drift towards
advanced algorithms that favor languages capable of expressing a variety of data
structures and using them efficiently. This increased emphasis on flexibility compen-
sates for Fortran's advantage in basic vector computation. Importantly, C++ programs
can cal basic Fortran and assembler routines where necessary or simply convenient.
The integration of numeric programs into larger applications creates demands that suit
C++. For example, Fortran's advantages in low-level computation are minimized
when the emphasis is on nonnumeric concerns such as visualization, simulation, data-
base access, and real-time data gathering.
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9.3.2.5 General Application Programming

C++ is not ideally suited for applications that do not have magor systems-
programming components and where the run-time and space efficiency requirements
are not demanding. However, when supported by libraries and possibly by a garbage
collector C++ often is aviable tool.

| expect specialized languages, program generators, and direct manipulation tools
to dominate many such application areas. For example, why write program text to
generate a user interface when you can have the code generated by a program given
an example screen layout composed from a menu? Similarly, why write Fortran or
C++ to do advanced math when you can use much higher-level specialized languages?
In such cases, however, the higher-level language, tool, or generator needs to be
implemented in some suitable language and will often need to generate code in some
lower-level language to actualy perform the actions. The requirements for an imple-
mentation language and a target language usualy fit C++ very well so | predict a
major role for C++ as the implementation language for higher-level languages and
tools. These are other roles that C++ inherits from C. C++ details such as the ability
to declare variables almost anywhere combine with major program organization fea-
tures such as namespaces to make C++ even better suited as atarget language than C.

Higher-level tools and languages tend to be specialized. Consequently, good ones
provide facilities for users to extend and modify the default behavior by adding code
written in a lower-level language. C++'s abstraction mechanisms can be used to
smoothly fit C++ code into a framework provided by a higher-level tool.

9.3.2.6 Mixed Systems

C++'s most significant strength comes from its ability to function in systems and
organizations that combine aspects of severa of these kinds of applications. My con-
jecture is that most significant systems and organizations need such combinations.
User interfaces often need graphics; specific applications often rely on specialized
languages and program generators; simulators and analytical subsystems require com-
putation; communications subsystems require extensive systems programming; most
large systems rely on some database; special hardware requires low-level work. In al
these areas - and others - C++ will be at least the second choice. Overal, it will be
the first choice often enough to be considered a major language.

All languages die or mutate to meet new challenges. A language with alarge and
vigorous user community will mutate rather than die. This is what happened to C
yielding C++ and that is what some day will happen to C++. C++ is arelatively young
language, but it is worthwhile considering its strengths and weaknesses to build on the
former and compensate for the latter.

C++ isn't perfect; it wasn't designed to be and neither is any other general-purpose
language. However, C++ is good enough not to be replaced by a similar language.
Only a fundamentally different language could provide significant enough benefits to
make it clearly superior. Just being a better C++ will not be sufficient to cause a
change. That is why C++ isn'tjust a better C: Had C++ not provided significant new
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ways of writing programs it wouldn't have been worthwhile for programmers to
upgrade from C. That is why Pascal and Modula-2 failed as alternatives to C even
though a solid section of the academic community was pushing these languages for
years. they were not sufficiently different from C to be significantly better. Also, if
something better but not radically different appears, a lively and diverse community
will simply absorb the new ideas and features. The initial design of C++ and its evo-
[ution into the current language provides ample examples of this.

| don't see afundamentally different language that in the near future could replace
C++ across its application areas - just languages that provide essentially similar fea
ture sets in different ways, niche languages, and experimental languages. | expect that
some of these experimental languages will in time grow to provide significant
improvements over what C++ is now and will evolve into over the next few years.

94 What Will Make C+ Much More Effective?

There is no room for complacency in the world of software development. Over the
years, the growth of expectations has consistently outstripped even the fantastic
improvements of both hardware and software, and | see no reason for this to change
soon. Much can be done to make C++ implementations more helpful to their users,
and much can be learned by programmers and designers to make themselves more
effective. Here, | will hazard a fev comments about what | think should be done to
make C++ programming more effective.

9.4.1 Stability and Standards

Stability of the language definition and of key libraries and interfaces comes high on
the list of requirements for further progress. The ANSI/ISO C++ standard should pro-
vide the former, and various organizations and companies are working on the latter in
areas such as operating system interfaces, dynamically linked libraries, database inter-
faces, etc. | am looking forward to the day - not too far in the future - when C++ as
described in this book is generadly available on all mgor platforms. This will be of
great help to the libraries and tools industry.

People will of course keep asking for new features, but | can live with C++ as
described here. | conjecture that so can most programmers of production code. It is
worth remembering that no single feature is essential for producing good code - for
any definition of "good."

9.4.2 Education and Technique

Of dl the areas of C++ and its use, | see the greatest potential for improvement from
smply learning new design and programming techniques. In principle, the easiest
and cheapest improvements can be had by using C++ more effectively. No expensive
tools are necessary. On the other hand, changing habits of thinking isn't easy. For
most programmers, what is needed is not simply training in a new syntax, but an
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education in new concepts. Have alook at §7.2 and read atextbook that touches upon
design issues such as [2nd] or [Booch,1993]. | expect to see significant improve-
ments in design and programming technique over the next few years, but that is no
reason for delay. Most of us are far enough behind the current state of the art in one
or more areas that we can reap significant benefits from some reading and experimen-
tation right now. That's also more fun than struggling at the bleeding edge of stan-
dards and tools.

9.4.3 Systems Issues

C++ is a language rather than a complete system. In most contexts that has been a
strength, and tools are provided to make up a complete software development and
execution environment. However, the interface between the language and the envi-
ronment fals through the cracks of this classification. This has led to disappointingly
dow progress in areas such as incremental linking and dynamic loading. By and
large, people have done nothing, relied on mechanisms designed for C, or worked on
mechanisms intended to be general enough to support "all object-oriented program-
ming languages." The results have been rather poor from the point of view of a C++
programmer.

Early experiments integrating C++ and dynamic linking were promising so | had
expected dynamic linking of classes to be common years ago. For example, we had a
technique for efficient and type-safe incremental linking based on abstract types run-
ning by 1990 [Stroustrup,1987d] [Dorward,1990]. The technique wasn't much used
in real systems, but abstract classes became important in maintaining firewalls, mini-
mizing recompilation after change, and in general to ease the use of software compo-
nents from multiple sources (813.2.2).

Another important issue that languished because it didn't fit well with the separa-
tion of the programmer's world into distinct areas of concern was support for evolu-
tion of software. Fundamentally, the problem is that once alibrary is in use, you can
change its implementation only if its users either don't depend on implementation
details such as the size of an object or are willing and able to recompile their code
with the new version of the library. Object models such as Microsoft's OLE2, IBM's
SOM, and the Object Management Group's CORBA address this problem by provid-
ing an interface that hides implementation details and is supposedly language inde-
pendent. The language independence imposes some awkwardness on the C++ pro-
grammer and typically some time or space overhead as well. In addition, each major
section of the software industry seems to have its own "standard" for addressing this
problem. Only time will tell to what extent these techniques help and hinder C++ pro-
grammers. The namespace mechanism provides an approach to interface evolution
within the C++ language itself (§17.4.4).

| have reluctantly come to accept that some system-related issues would have been
better handled within C++. System-related issues, such as dynamic linking of classes
and interface evolution do not logicaly belong in a language and language-based
solutions are not preferable on technical grounds. However, the language provides
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the only common forum in which atruly standard solution can become accepted. For
example, the Fortran and C calling interfaces have become a de facto standard for
inter-language calls. They are a standard because C and Fortran are popular and
because their calling interfaces are simple and efficient - the lowest common denomi-
nator. | didlike this conclusion because it implies a barrier to the use of multiple lan-
guages in a system unless the mechanism supplied by a single language becomes
accepted as a standard by other languages.

9.4.4 Beyond Files and Syntax

Let me outline the program development environment 1'd like for C++. First of all, |
want incremental compilation. When | make aminor change, | want' 'the system” to
note that the change was minor and have the new version compiled and ready to run
inasecond. Similarly, I want smple requests, such as "Show me the declaration of
this f ?* "What f s are in scope here?' "What is the resolution of this use of +?"
"Which classes are derived from class Shape?" and "What destructors are called at
the end of this block?" answered in a second.

A C++ program contains a wealth of information that in a typical environment is
available only to a compiler. | want that information at the programmer's fingertips.
However, most people look at a C++ program as a set of source files or as a string of
characters. That is to confuse the representation with what is represented. A program
is acollection of types, functions, statements, etc. To fit into traditional programming
environments, these concepts are represented as characters in files.

Basing C++ implementations on character-oriented tools has been a magor impedi-
ment to progress. If you have to preprocess and recompile every header file directly
or indirectly included in the file containing a function in which you made a minor
change, one-second recompilation is not going to happen. Severa techniques exist
for avoiding redundant recompilation, but dispensing with traditional source text and
basing tools on an abstract internal representation seems to me the most promising
and interesting approach. An early version of such an representation can be found in
[Murray,1992] [Koenig,1992]. Naturally, we need text as input and for people to look
at, but such text is easily absorbed into the system and easily reconstructed upon
request. It need not be fundamental. Text in the C++ syntax formatted according to
some indentation preference is just one of many alternative ways of looking at a pro-
gram. The simplest application of this notion is to alow you to look at a program
using your preferred layout style while | at the same time can look at the same pro-
gram using my preferences.

A dignificant use of a non-textual representation would be as atarget for code gen-
eration from higher-level languages, program generators, direct manipulation tools,
etc. It would allow such tools to bypass the traditional C++ syntax. It might even
become atool for migrating C++ away from some of the more contorted aspects of its
syntax. | maintain that C++'s type system and semantics are cleaner than its syntax.
Within C++, there is a much smaller and cleaner language struggling to get out. An
environment like the one I'm envisioning might be a way of proving that. Providing
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direct support for various forms for design are obvious applications.

From the notion of the syntax being the user interface of a language follows that
alternative user interfaces are possible. The only really important constant in the sys-
tem is the basic semantics of the language. That must be maintained at al times, and
as long as that is the case, traditional C++ code in the familiar text form can aways be
produced on request.

An environment based on an abstract representation of C++ alows aternative
ways of producing C++ and alternative ways of looking at C++. It would aso provide
alternative ways of linking, compiling, and executing code. For example, linking
could be done before code generation because there would be no need to produce
object code to gain access to linking information. The difference between an inter-
preter and a compiler would become somewhat academic because both would rely on
the same information in roughly the same format.

9.4.5 Putting It All Together

C++'s main strength isn't being great at a single thing, but being good at a great vari-
ety of things. Similarly, progress isn't going to come primarily from a single
improvement, but from a great variety of improvements in different areas. Better
libraries, better design techniques, better-educated programmers and designers, a lan-
guage standard, optional garbage collection, object-communication standards, data-
bases, non-text-based environments, better tools, faster compilers, etc., will al con-
tribute.

| think that we have barely begun to see what benefits we can reap from C++. The
base has been constructed, but just the base. In the future, | expect to see the magjor
activity and progress shift from the language proper - which is that base - to the tools,
environments, libraries, applications, etc., that depend on it and build on it.
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Part |1 describes C++ features developed after Release 1.0. The individ-
ual features are grouped into chapters based on their logical relationships.
The chronology of their introduction into C++ is unimportant for the lan-
guage as a whole and is not reflected here. The ordering of the chapters
is of little importance; they can be read in any order. The features pre-
sented here represent the completion of C++ as envisioned in 1985 tem-
pered by experience.
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10 Memory Management

11 Overloading

12 Multiple Inheritance

13 Class Concept Refinements
14 Casting

15 Templates

16 Exception Handling

17 Namespaces

18 The C Preprocessor
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Memory Management

No amount of genius can
overcome obsession with detail.
- traditional

The need for fine-grain control of alocation and deallocation — separating
alocation and initialization — array alocation — placement —
deallocation problems — memory exhaustion — handling memory exhaus-
tion — automatic garbage collection.

10.1 Introduction

C++ provides the operator new to alocate memory on the free store and the operator
del ete to release store alocated this way (82.11.2). Occasionaly, a user needs a
finer-grained control of allocation and deallocation.

An important case is a per-class alocator for a frequently used class (see
[2nd,pgl 77]). Many programs create and delete large numbers of small objects of a
few important classes such as tree nodes, linked lists links, points, lines, messages,
etc. The allocation and deallocation of such objects with a general-purpose alocator
can easily dominate the run time and sometimes also the storage requirements of the
programs. Two factors are at play: the simple run-time and space overhead of a
general-purpose alocation operation and the fragmentation of the free store caused by
a mix of object sizes. | found that the introduction of a per-class alocator typicaly
doubles the speed of a ssimulator, compiler, or similar program that hasn't previously
had its memory management tuned. | have seen factors of ten improvements where
fragmentation problems were severe. Inserting a per-class allocator (either handwrit-
ten or from a standard library) became a five-minute operation with the 2.0 features.

Another example of a need for fine-grain control was programs that had to run
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without interruption for a long time with very limited resources. Hard real-time sys-
tems often need guaranteed and predictable memory acquisition with minimal over-
head that leads to similar requirements. Traditionally, such programs have avoided
dynamic allocation altogether. A special-purpose allocator can be used to manage
these limited resources.

Finally, | encountered several cases where an object had to be placed at a specific
location or in a specific memory area because of hardware or system requirements.

The revision of C++'s memory management mechanisms (82.11.2) for Release 2.0
was aresponse to such demands. The improvements consist primarily of mechanisms
for control of allocation and rely on the programmer's understanding of the issues
involved. They were intended to be used together with other language features and
techniques to encapsul ate the areas where control is exercised in delicate ways. These
mechanisms were completed in 1992 with the introduction of operator new [ ] and
operator delete[] to dea with arrays.

On severd occasions, suggestions came from friends at Mentor Graphics where a
very large and complex CAD/CAM system was being built in C++. In this system,
most of the known programming problems had to be faced on the scale of hundreds of
programmers, millions of lines of code, under severe performance requirements, with
resource limitations, and market deadlines. In particular, Archie Lachner from Men-
tor provided insights on memory management issues that became significant in the
2.0 overhaul of C++.

10.2 Separating Allocation and Initialization

The pre-2.0 way of controlling allocation and deallocation on a per-class basis, using
assignment to this (83.9), proved error-prone and was declared obsolete. Release
2.0 alowed separate specification of alocation and initialization as an alternative. In
principle, initialization is done by the constructor after allocation has been done by
some independent mechanism. This allows a variety of alocation mechanisms -
some user-provided - to be used. Static objects are alocated at link time, loca
objects on the stack, and objects created by the new operator by an appropriate
operator new (). Dedllocation is handled similarly. For example:

class X {
...

public:
voi d* operator new(size_t sz); // allocate sz bytes
voi d operator delete(void* p). // free p

X(); /'l initialize
X(int i); /I initialize

~X(); /'l cl eanup
...
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The type size_t is an implementation-defined integral type used to hold object
sizes; it is borrowed from the ANS| C standard.

It is the new operator's job to ensure that the separately specified alocation and
initialization are correctly used together. For example, it is the compiler'sjob to gen-
erate a call of the allocator X: : operator new() and a call of an X constructor
from ause of new for X. Logically, X: : operator new () is called before the con-
structor. It must therefore return avoid* rather than an X*. The constructor makes
an X object out of the memory allocated for it.

Conversely, the destructor "deconstructs”' an object leaving raw memory only for
operator delete() to free. Therefore, X::operator delete() takes a
void* argument, rather than an X*.

The usua rules for inheritance apply, so objects of a derived class will be allo-
cated using a base class' operator new ():

class Y : public X { // objects of class Y are al so
/1 allocated using X :operator new
...

b
For this, X: : operator new () needs an argument specifying the amount of store
to be dlocated: sizeof (Y) istypicaly different from sizeof (X). Unfortunately,
novice users often get confused when they have to declare that argument, but don't
have to supply it explicitly in calls. The notion of a user-declared function with an
argument that is "magically” supplied by "the system" seems hard to grasp for
some. In exchange for this added complexity, however, we get the ability to have a
base class provide allocation and deallocation services for a set of derived classes -
and more regular inheritance rules.

10.3 Array Allocation

A class specific X: : operator new () is used for individual objects of class X
only (including objects of classes derived from class X that do not have their own
operator new ()). It follows that

X* p = new X[10];

does not involve X: : operator new () because X [10] is an array rather than an
object of type X.

This caused some complaints because it didn't allow users to take control of allo-
cations of arrays of X. However, | was adamant that an '‘array of X" wasn't an X and
therefore the X allocator couldn't be used. If used for arrays, the writer of
X: :operator new () would have to dea with the problems of array allocation
"just in case," thus complicating the critical common case. If that case wasn't criti-
cal, why bother with a specia allocator? Also, | pointed out, controlling the alloca-
tion of single-dimension arrays such as X[d] isn't sufficient: what about multiple-
dimension arrayssuchas X [dl ] [d2] ?
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However, the lack of a mechanism for controlling array allocation caused a certain
amount of grief in real cases and eventually the standards committee provided a solu-
tion. The most critical problem was that there was no way to prevent users from allo-
cating arrays on the free store, yet no way of controlling such allocation. In systems
relying on logically different storage management schemes, this can cause serious
problems as users naively place large dynamic arrays in the default allocation area. |
had not fully appreciated the implications of this.

The solution adopted is simply to provide a pair of functions specifically for array
allocation/deallocation:

class X {
...
voi d* operator new(size_t sz); /1 allocate objects

voi d operator del ete(void* p) ;

voi d* operator new](size_t sz); // allocate arrays
voi d operator delete[](void* p);

b

The array alocator is used to obtain space for arrays of any dimension. As for all
alocators, thejob of operator new [ ] isto provide the number of bytes asked for;
it does not concern itself about how that memory is used. In particular, it does not
need to know the dimensions of the array or its number of elements. Laura Yaker
from Mentor Graphics was the prime mover in the introduction of the array allocation
and deallocation operators.

104 Placement

Two related problems were solved by a common mechanism:

[1] We needed a mechanism for placing an object at a specific address, for exam-
ple, placing an object representing a process a the address required by
specia-purpose hardware.

[2] We needed a mechanism for alocating objects from a specific arena, for exam-
ple, for allocating an object in the shared memory of a multi-processor or from
an arena controlled by a persistent object manager.

The solution was to allow overloading of operator new () and to provide a syntax
for supplying extra arguments to the new operator. For example, an operator
new () that places an object at a particular address can be defined like this:

voi d* operator new(size_t, void* p)

{

}
and invoked like this:

return p; // place object at 'p'
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void* buf = (void*)OxFOOF; // significant address

X* p2 = new(buf)X; // construct an X at 'buf’
/I invokes: operator new(sizeof(X),buf)

Because of this usage, the "new (buf) X" syntax for supplying extra arguments to
operator new() is known as the placement syntax. Note that every operator
new () takes a size as its first argument and that the size of the object allocated is
implicitly supplied.

If anything, | underestimated the importance of placement at the time. With
placement, operator new ceases to be smply a memory alocation mechanism.
Because one can associate al kinds of logical properties with specific memory loca-
tions, new takes on aspects of general resource management.

Anoperator new () for a specific alocation arena might be defined like this:

voi d* operator new(size_t s, fast_arena& a)

{
return a.alloc(s);
}
and used like this:

void f(fast_arena& arena)

{
X* p = new(arena)X; /1 allocate X in arena
...

}

Here, a fast_arena is assumed to be a class with a member function alloc ()
that can be used to obtain memory. For example:

class fast_arena {
I
char* maxp;
char* freep;
char* expand(size_t s); // get nmore nenmory from
/1 general purpose allocator
public:
voi d* alloc(size_t s) {
char* p = freep;
return ((freep+=s)<maxp) ? p : expand(s);

void free(void*) {} // ignore
clear(); // free all allocated nenory

b

This would be an arena specialized for fast alocation and almost instant freeing. One
important use of arenas is to provide specialized memory management semantics.
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105 Dedlocation Problems

There is an obvious and deliberate asymmetry between operator new () and
operator delete(). The former can be overloaded, the latter can't. This
matches the similar asymmetry between constructors and destructors. Consequently,
you may be able to choose between four allocators and five constructors when creat-
ing an object, but when it comes time to destroy it, there is basically only one choice:

delete p;

The reason is that in principle you know everything at the point where you create an
object, but when it comes to deleting it, al you have left is a pointer that may or may
not be of the exact type of the object.

The use of a virtual destructor is crucial for getting destruction right in cases in
which a user deletes an object of a derived class through a pointer to the base class:

class X {
1.
virtual ~X() ;
h

class Y : public X {
...

~Y()
}s

void f(X* pi)
{
X* p2 = newY;
del ete p2; /1 Y::~Y correctly invoked
del ete pi; // correct destructor
/1 (whichever that may be) invoked

}
This will also ensure that if there are loca operator delete () functions in the
hierarchy, the right one will be called. Had a virtual destructor not been used, the
cleanup specified in Y's destructor would not have been performed.
However, there is no language feature for selecting between deallocation functions
to match the mechanism for selecting between allocation functions:

class X {
/1
voi d* operator new(size_t); // ordinary allocation
voi d* operator new(size_t, Arena&); // in Arena

voi d operator del ete(void*);
/1 can't define void operator del ete(void*, Arenag&);

b
The reason is again that at the point of deletion, the user can't be expected to know
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how the object was allocated. Ideally, of course, a user should not have to deallocate
an object at all. That is one use of specia arenas. An arena can be defined to be deal-
located as a unit at some well-defined point in a program, or one can write a special-
purpose garbage collector for an arena. The former is quite common, the latter isn't
and needs to be done very well to be able to compete with a standard conservative
plug-in garbage collector [Boehm,1993].

More frequently, the operator new () functions are programmed to leave an
indicator of how they want to be deallocated for operator delete() to find.
Note that this is memory management and therefore at a conceptual level below that
of the objects created by the constructors and destroyed by the destructors. Conse-
quently the memory containing this information is not in the object as such but some-
where related to it. For example, an operator new () may place memory manage-
ment information in the word ahead of the one pointed to by its return value. Alterna-
tively, an operator new () can leave information in a place where constructors or
other functions can find them to determine whether an object is alocated on a free
store.

Was it amistake not to alow users to overload del ete? If so, it would be amis-
guided attempt to protect people against themselves. 1'm undecided, but I'm pretty
certain that this is one of the nasty cases where either solution would cause problems.

The possibility of calling a destructor explicitly was introduced in 2.0 to cater to
rare cases where alocation and dealocation have been completely separated from
each other. An example is a container that does al memory management for its con-
tained objects.

10.5.1 Deallocating Arrays

From C, C++ inherited the problem that a pointer points to an individua object but
that object may actualy be the initial element of an array. In general, the compiler
cannot tell. An object pointing to the first element of an array is typically said to
point to the array and allocation and deallocation of arrays is handled through such
pointers. For example:

void f(X* pl) //pl may point to an individual object
/Il or to an array

{
X* p2 = new X[ 10]; // p2 points to the array
...

}

How do we ensure that an array is correctly deleted? In particular, how do we ensure
that the destructor is called for all elements of an array? Release 10 didn't have a sat-
isfactory answer. Release 2.0 introduced an explicit delete-array operator
delete[]:
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void f(X* pi) /Ipi may point to an individual object
/I or to an array

{
X* p2 = new X[10]; // p2 points to the array

/...

delete p2; // error: p2 points to an array
delete[] p2; // ok

delete pl; // maybe ok, trust the progranmer
delete[] pl; // maybe ok, trust the progranmmer

}

Plain delete isn't required to handle both individual objects and arrays. This
avoids complicating the common case of allocating and deallocating individual
objects. It also avoids encumbering individual objects with information necessary for
array deallocation.

An intermediate version of delete[] required the programmer to specify the
number of elements of the array. For example:

del ete[ 10] p2;

That proved too error-prone, so the burden of keeping track of the number of elements
was placed on the implementation instead.

106 Memory Exhaustion

Finding that a requested resource cannot be obtained is a general and nasty problem. |
had decided (pre-2.0) that exception handling was the direction in which to look for
genera solutions to this kind of problem (83.15). However, exception handling (816)
was then ill far in the future, and the particular problem of free store exhaustion
couldn't wait. Some solution, however ugly, was needed for an interim period of sev-
eral years.

Two problems needed immediate solutions:

[1] It must be possible for a user to gain control in al cases in which alibrary call
fails due to memory exhaustion (more generally, in al cases in which alibrary
cal fails). This was an absolute requirement from important internal AT& T
users.

[2] The average user mustn't be required to test for memory exhaustion after each
allocation operation. In any case, experience from C shows that users don't
test consistently even when they are supposed to.

The first requirement was met by specifying that a constructor isn't executed if
operator new() returns 0. In that case, the new expression also yields 0. This
enables critical software to defend itself against alocation problems. For example:
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void f()
{
X* p = new X
if (p=0 {
/! handl e allocation error
/] constructor not called

}
/1l use p

}

The second requirement was met by what was known as anew_handler, that is, a
user-supplied function guaranteed to be called if memory can't be found by operator
new. For example:

void my_handler() { /* ... */ }

void f()

{
set _new_handl er (& _handl er); // my_handl er used for

/1 menmory exhaustion
/1 fromhere on
...

}

This technique was presented in [Stroustrup,1986] and is a general pattern for dealing
with resource acquisition that occasionally fails. Basically, anew_handler can:

- find more resources (that is, find free memory to alocate), or

- produce an error message and exit (somehow).
With exception handling, "exit" can be less drastic than terminating the program
(816.5).

10.7 Automatic Garbage Collection

| deliberately designed C++ not to rely on automatic garbage collection (usually just
caled garbage collection). | feared the very significant space and time overheads |
had experienced with garbage collectors. | feared the added complexity of implemen-
tation and porting that a garbage collector would impose. Also, garbage collection
would make C++ unsuitable for many of the low-level tasks for which it was intended.
| like the idea of garbage collection as a mechanism that smplifies design and elimi-
nates a source of errors. However, | am fully convinced that had garbage collection
been an integral part of C++ originally, C++ would have been stillborn.

My opinion was that if you needed garbage collection, you could either implement
some automated memory management scheme yourself or use a language that sup-
ported it directly, say, my old favorite Smula. Today, the issue is not so clear cut.
More resources are available for implementation and porting. Much C++ software
exists that can't just be rewritten in other languages. Garbage collectors have
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improved, and many of the techniques for "home brew" garbage collection that | had
envisioned or used don't scale up from individua projects to general-purpose
libraries. Most importantly, more ambitious projects are now done in C++. Some of
these could benefit from garbage collection and could afford it.

10.7.1 Optional Garbage Collection

Optional garbage collection is, | think, the right approach for C++. Exactly how that
can best be done is not yet known, but we are going to get the option in several forms
over the next couple of years. Implementations already exist, so it isjust a matter of
time before they make it out of research and into production code.

The fundamental reasons why garbage collection is desirable are easily stated:

[1] Garbage collection is the easiest for the user. In particular, it smplifies the
building and use of some libraries.

[2] Garbage collection is more reliable than user-supplied memory management
schemes for some applications.

The reasons against are more numerous, but less fundamental in that they are imple-
mentation and efficiency issues:

[1] Garbage collection causes run-time and space overheads that are not affordable
for many current C++ applications running on current hardware.

[2] Many garbage collection techniques imply service interruptions that are not
acceptable for important classes of applications, such as hard real-time applica
tions, device drivers, control applications, human interface code on dow hard-
ware, and operating system kernels.

[3] Some applications do not have the hardware resources of atraditional general-
purpose computer.

[4] Some garbage collection schemes require banning several basic C facilities
such as pointer arithmetic, unchecked arrays, and unchecked function argu-
ments as used by printf ().

[5] Some garbage collection schemes impose constraints on object layout or object
creation that complicates interfacing with other languages